
sa    pa

Luis Ceze

Disciplined Approximate Computing: 
From Language to Hardware, and Beyond

University of Washington

joint work with Adrian Sampson, Hadi Esmaelizadeh, Mike Ringenburg, Renee StAmant, Ben 
Ransford, Andre Baixo,  Thierry Moreau, Dan Grossman, Mark Oskin (UW), Karin Strauss, 
Doug Burger, Todd Mytkowicz and Kathryn McKinley (Microsoft Research).



JPL & Rob Hogg

image, sound  
and video processing

image rendering

sensor data analysis, 
computer vision

✓
✓

simulations, games,  
search, machine learning

✓
✓



JPL & Rob Hogg

image, sound  
and video processing

image rendering

sensor data analysis, 
computer vision

✓
✓

simulations, games,  
search, machine learning

✓
✓

These applications consume a lot 
(most?) 
Often input data is inexact by nature 
(from sensors) 
They have multiple acceptable outputs



JPL & Rob Hogg

image, sound  
and video processing

image rendering

sensor data analysis, 
computer vision

✓
✓

simulations, games,  
search, machine learning

✓
✓

These applications consume a lot 
(most?) 
Often input data is inexact by nature 
(from sensors) 
They have multiple acceptable outputs
They do not require “perfect execution”



Floating point

Iterative algorithms
Lossy compression

Notions of “approximation” have 
been around for a long time...

...



Floating point

Iterative algorithms
Lossy compression

Notions of “approximation” have 
been around for a long time...

...



So what is “Approximate computing” then?
Floating point

Iterative algorithms
Lossy compression

Notions of “approximation” have 
been around for a long time...

...



So what is “Approximate computing” then?
Floating point

Iterative algorithms
Lossy compression

Notions of “approximation” have 
been around for a long time...

...

Pe
rf
or
m
an
ce

Resource	  usage	  (e.g.,	  energy)



So what is “Approximate computing” then?
Floating point

Iterative algorithms
Lossy compression

Notions of “approximation” have 
been around for a long time...

...

Pe
rf
or
m
an
ce

Resource	  usage	  (e.g.,	  energy)

Ac
cu
rac
y



So what is “Approximate computing” then?
Floating point

Iterative algorithms
Lossy compression

Notions of “approximation” have 
been around for a long time...

...

Pe
rf
or
m
an
ce

Resource	  usage	  (e.g.,	  energy)

Ac
cu
rac
y

Sources	  of	  systematic	  accuracy	  loss:	  
• Unsound	  code	  transformations,	  ~2X	  
• Unreliable,	  probabilistic	  hardware	  (near/sub-‐threshold,	  etc.),	  ~5X	  
• Fundamentally	  different,	  inherently	  inaccurate	  execution	  models,	  
“closer	  to	  physics”	  	  (e.g.,	  neural	  networks,	  analog	  computing),	  
~10-‐100X





EnergyErrors EnergyErrors

EnergyErrors EnergyErrors



EnergyErrors EnergyErrors

EnergyErrors EnergyErrors



But approximation needs to be done 
carefully... or...







“Disciplined” approximate programming

Precise Approximate

references

jump targets

JPEG header

pixel data

neuron weights

audio samples

video frames



“Disciplined” approximate programming

Precise Approximate
✗
✓references

jump targets

JPEG header

pixel data

neuron weights

audio samples

video frames

•Programmer has direct control of approximate/precise and the flow  
•System is free to approximate as long as rules are obeyed



Disciplined Approximate Programming 

(EnerJ, EnerC,...)

int p = 5;!
@Approx int a = 7;!
for (int x = 0..) {!

a += func(2);!
@Approx int z;!
z = p * 2;!
p += 4;!

}!
a /= 9;!
p += 10;!
socket.send(z);!
write(file, z);



Disciplined Approximate Programming 

(EnerJ, EnerC,...)

int p = 5;!
@Approx int a = 7;!
for (int x = 0..) {!

a += func(2);!
@Approx int z;!
z = p * 2;!
p += 4;!

}!
a /= 9;!
p += 10;!
socket.send(z);!
write(file, z);Relaxed Algorithmsλ



Disciplined Approximate Programming 

(EnerJ, EnerC,...)

int p = 5;!
@Approx int a = 7;!
for (int x = 0..) {!

a += func(2);!
@Approx int z;!
z = p * 2;!
p += 4;!

}!
a /= 9;!
p += 10;!
socket.send(z);!
write(file, z);Relaxed Algorithmsλ

Aggressive Compilationɸ



Disciplined Approximate Programming 

(EnerJ, EnerC,...)

int p = 5;!
@Approx int a = 7;!
for (int x = 0..) {!

a += func(2);!
@Approx int z;!
z = p * 2;!
p += 4;!

}!
a /= 9;!
p += 10;!
socket.send(z);!
write(file, z);Relaxed Algorithmsλ

Aggressive Compilationɸ
Approximate Data Storage



Disciplined Approximate Programming 

(EnerJ, EnerC,...)

int p = 5;!
@Approx int a = 7;!
for (int x = 0..) {!

a += func(2);!
@Approx int z;!
z = p * 2;!
p += 4;!

}!
a /= 9;!
p += 10;!
socket.send(z);!
write(file, z);Relaxed Algorithmsλ

Aggressive Compilationɸ
Approximate Data Storage

Variable-Accuracy ISAALU



Disciplined Approximate Programming 

(EnerJ, EnerC,...)

int p = 5;!
@Approx int a = 7;!
for (int x = 0..) {!

a += func(2);!
@Approx int z;!
z = p * 2;!
p += 4;!

}!
a /= 9;!
p += 10;!
socket.send(z);!
write(file, z);Relaxed Algorithmsλ

Aggressive Compilationɸ
Approximate Data Storage

Variable-Accuracy ISAALU

Approximate Logic/Circuits
AND

NOR

NAND



Disciplined Approximate Programming 

(EnerJ, EnerC,...)

int p = 5;!
@Approx int a = 7;!
for (int x = 0..) {!

a += func(2);!
@Approx int z;!
z = p * 2;!
p += 4;!

}!
a /= 9;!
p += 10;!
socket.send(z);!
write(file, z);Relaxed Algorithmsλ

Aggressive Compilationɸ
Approximate Data Storage

Variable-Accuracy ISAALU

Approximate Logic/Circuits
AND

NOR

NAND



Disciplined Approximate Programming 

(EnerJ, EnerC,...)

int p = 5;!
@Approx int a = 7;!
for (int x = 0..) {!

a += func(2);!
@Approx int z;!
z = p * 2;!
p += 4;!

}!
a /= 9;!
p += 10;!
socket.send(z);!
write(file, z);Relaxed Algorithmsλ

Aggressive Compilationɸ
Approximate Data Storage

Variable-Accuracy ISAALU

Approximate Logic/Circuits
AND

NOR

NAND

Variable-quality wireless 
communication



Disciplined Approximate Programming 

(EnerJ, EnerC,...)

int p = 5;!
@Approx int a = 7;!
for (int x = 0..) {!

a += func(2);!
@Approx int z;!
z = p * 2;!
p += 4;!

}!
a /= 9;!
p += 10;!
socket.send(z);!
write(file, z);Relaxed Algorithmsλ

Aggressive Compilationɸ
Approximate Data Storage

Variable-Accuracy ISAALU

Approximate Logic/Circuits
AND

NOR

NAND

Variable-quality wireless 
communication



Disciplined Approximate Programming 

(EnerJ, EnerC,...)

int p = 5;!
@Approx int a = 7;!
for (int x = 0..) {!

a += func(2);!
@Approx int z;!
z = p * 2;!
p += 4;!

}!
a /= 9;!
p += 10;!
socket.send(z);!
write(file, z);Relaxed Algorithmsλ

Aggressive Compilationɸ
Approximate Data Storage

Variable-Accuracy ISAALU

Approximate Logic/Circuits
AND

NOR

NAND

Variable-quality wireless 
communication

Goal: support a wide range of approximation 
techniques with a single unified  abstraction.



The plan for this talk

Language

Compiler

Architecture

Circuits

Application



Language

Compiler

Architecture

Circuits

Application

EnerJ

Truffle NPUISA w/ variable 
accuracy

neural 
networks 

as accelerators

Approximate

Storage

The plan for the rest of this talk

Prototype, etc

QoR

Approximate

Wireless

type system  
for where-to-
approximate

quality of 
results



EnerJ EnerJ: Approximate Data Types for Safe and 
General Low-Power Computation, PLDI 2011



EnerJ
Separate critical and non-critical 
program components. Analyzable 
statically. Precise Approximate

✗

✓

EnerJ: Approximate Data Types for Safe and 
General Low-Power Computation, PLDI 2011



EnerJ
Separate critical and non-critical 
program components. Analyzable 
statically. Precise Approximate

✗

✓

int a = ...;

int p = ...;

EnerJ: Approximate Data Types for Safe and 
General Low-Power Computation, PLDI 2011



EnerJ
Separate critical and non-critical 
program components. Analyzable 
statically. Precise Approximate

✗

✓

int a = ...;

int p = ...;

@Approx

@Precise

EnerJ: Approximate Data Types for Safe and 
General Low-Power Computation, PLDI 2011



EnerJ
Separate critical and non-critical 
program components. Analyzable 
statically. Precise Approximate

✗

✓

✓✗

int a = ...;

int p = ...;

@Approx

@Precise

p = a;

a = p;

EnerJ: Approximate Data Types for Safe and 
General Low-Power Computation, PLDI 2011



EnerJ
Separate critical and non-critical 
program components. Analyzable 
statically. Precise Approximate

✗

✓

✓✗

int a = ...;

int p = ...;

@Approx

@Precise

p = a;

a = p;

EnerJ: Approximate Data Types for Safe and 
General Low-Power Computation, PLDI 2011

!

• Operator overloading for approximate 
operations:  

!

• Endorsement of approximate values: 
!

• Dealing with implicit flows in control: 
!

!

!

int a = ...;@Approx
int p = ...;@Precise



EnerJ
Separate critical and non-critical 
program components. Analyzable 
statically. Precise Approximate

✗

✓

✓✗

int a = ...;

int p = ...;

@Approx

@Precise

p = a;

a = p;

EnerJ: Approximate Data Types for Safe and 
General Low-Power Computation, PLDI 2011

!

• Operator overloading for approximate 
operations:  

!

• Endorsement of approximate values: 
!

• Dealing with implicit flows in control: 
!

!

!

int a = ...;@Approx
int p = ...;@Precise

p + p; p + a; a + a;



EnerJ
Separate critical and non-critical 
program components. Analyzable 
statically. Precise Approximate

✗

✓

✓✗

int a = ...;

int p = ...;

@Approx

@Precise

p = a;

a = p;

EnerJ: Approximate Data Types for Safe and 
General Low-Power Computation, PLDI 2011

!

• Operator overloading for approximate 
operations:  

!

• Endorsement of approximate values: 
!

• Dealing with implicit flows in control: 
!

!

!

int a = ...;@Approx
int p = ...;@Precise

p + p; p + a; a + a;

endorse(a);p =✓



EnerJ
Separate critical and non-critical 
program components. Analyzable 
statically. Precise Approximate

✗

✓

✓✗

int a = ...;

int p = ...;

@Approx

@Precise

p = a;

a = p;

EnerJ: Approximate Data Types for Safe and 
General Low-Power Computation, PLDI 2011

!

• Operator overloading for approximate 
operations:  

!

• Endorsement of approximate values: 
!

• Dealing with implicit flows in control: 
!

!

!

int a = ...;@Approx
int p = ...;@Precise

p + p; p + a; a + a;

✗if (       !    p = 2;!
}

a == 10)

endorse(a);p =✓



EnerJ
Separate critical and non-critical 
program components. Analyzable 
statically. Precise Approximate

✗

✓

✓✗

int a = ...;

int p = ...;

@Approx

@Precise

p = a;

a = p;

EnerJ: Approximate Data Types for Safe and 
General Low-Power Computation, PLDI 2011

!

• Operator overloading for approximate 
operations:  

!

• Endorsement of approximate values: 
!

• Dealing with implicit flows in control: 
!

!

!

int a = ...;@Approx
int p = ...;@Precise

p + p; p + a; a + a;

✓if (       !
    p = 2;!
}

a == 10 ) {endorse( )

endorse(a);p =✓



EnerJ
language for 

where-to-
approximate

Monitoring

Application
quality 

evaluation



EnerJ
language for 

where-to-
approximate

Monitoring

Application
quality 

evaluation



How good is my final output?

• Quality-‐of-‐Result	  (QoR)	  
• Application	  dependent	  	  
– e.g,	  %	  of	  bad	  pixels,	  deviation	  from	  expected	  value,	  %	  
of	  poorly	  classified	  images,	  car	  crashes,	  etc…



Specifying and checking QoR



Specifying and checking QoR

res = computeSomething(); 
assert diff(res, resʹ) < 0.1;

precise version of the result



Verifying quality expressions

approximate 
program 

+ 
input and error  

distribution
Bayesian 

network IR
optimized 
Bayes net

sampling

exact 
evaluation

Expressing and Verifying Probabilistic Assertions, PLDI’14



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

<ε?-



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

<ε?-

<ε?-



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

<ε?-

<ε?-



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

Simple!
verification 
functions

<ε?-

<ε?-



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

Simple!
verification 
functions

<ε?-

<ε?-
✓



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

Simple!
verification 
functions

<ε?-

<ε?-
✓



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

Simple!
verification 
functions

Fuzzy 
Memoization

<ε?-

<ε?-
✓



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

Simple!
verification 
functions

Fuzzy 
Memoization

<ε?-

<ε?-
✓



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

Simple!
verification 
functions

Fuzzy 
Memoization

<ε?-

<ε?-
✓



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

Simple!
verification 
functions

Fuzzy 
Memoization

<ε?-

<ε?-
✓



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

Simple!
verification 
functions

Fuzzy 
Memoization

<ε?

<ε?-

<ε?-
✓



Compiler

EnerJ

Truffle
ISA w/ 
variable 

accuracy

language for 
where-to-

approximate
Monitoring

Application

What about actual approximate execution?

quality 
evaluation



Compiler

EnerJ

Truffle
ISA w/ 
variable 

accuracy

language for 
where-to-

approximate
Monitoring

Application

What about actual approximate execution?

quality 
evaluation



Hardware support for 
disciplined approximate execution

Truffle 
CoreCompiler

int p = 5;!
@Approx int a = 7;!
for (int x = 0..) {!

a += func(2);!
@Approx int z;!
z = p * 2;!
p += 4;!

}!
a /= 9;!
func2(p);!
a += func(2);!
@Approx int y;!
z = p * 22 + z;!
p += 10;

VDDH

VDDL

Architecture Support for Disciplined Approximate Programming, ASPLOS 2012



@Approx float[] nums;!
⋮!
@Approx float total = 0.0f;!
for (@Precise int i = 0;!
     i < nums.length;!
     ++i)!
  total += nums[i];!
return total / nums.length;



@Approx float[] nums;!
⋮!
@Approx float total = 0.0f;!
for (@Precise int i = 0;!
     i < nums.length;!
     ++i)!
  total += nums[i];!
return total / nums.length;

approximate data storage



@Approx float[] nums;!
⋮!
@Approx float total = 0.0f;!
for (@Precise int i = 0;!
     i < nums.length;!
     ++i)!
  total += nums[i];!
return total / nums.length;

approximate operations



Relaxing the 
hardware-software interface

EnerJ

Compiler

Architecture

Circuits

ISA



Approximation-aware ISA

ld    0x04 r1!
ld    0x08 r2!
add   r1   r2   r3!
st    0x0c r3



Approximation-aware ISA

ld    0x04 r1!
ld    0x08 r2!
add.a r1   r2   r3!
st.a  0x0c r3



Approximation-aware ISA

ld    0x04 r1!
ld    0x08 r2!
add.a r1   r2   r3!
st.a  0x0c r3

operations
ALU

storage
registers
caches

main memory



Dual-voltage pipeline

Fetch Decode Reg Read Execute Memory Write 

Branch 
Predictor

Instruction 
Cache

ITLB

Decoder Register File

Integer FU

FP FU

Data Cache

DTLB

Register File

replicated functional units

dual-voltage SRAM arrays



Dual-voltage pipeline

Fetch Decode Reg Read Execute Memory Write 

Branch 
Predictor

Instruction 
Cache

ITLB

Decoder Register File

Integer FU

FP FU

Data Cache

DTLB

Register File

replicated functional units

dual-voltage SRAM arrays

7–24% energy saved on average 
(fft, game engines, raytracing, QR code readers, etc) 
(scope: processor + memory)



Dual-voltage pipeline

Fetch Decode Reg Read Execute Memory Write 

Branch 
Predictor

Instruction 
Cache

ITLB

Decoder Register File

Integer FU

FP FU

Data Cache

DTLB

Register File

replicated functional units

dual-voltage SRAM arrays

7–24% energy saved on average 
(fft, game engines, raytracing, QR code readers, etc) 
(scope: processor + memory)

not good... :( 
(though better implementations likely)



Amdahl’s law... damn!

Fetch Decode Reg Read Execute Memory Write Back

Branch 
Predictor

Instruction 
Cache

ITLB

Decoder Register File

Integer FU

FP FU

Data Cache

DTLB

Register File



Amdahl’s law... damn!

Fetch Decode Reg Read Execute Memory Write Back

Branch 
Predictor

Instruction 
Cache

ITLB

Decoder Register File

Integer FU

FP FU

Data Cache

DTLB

Register File

•Benefit limited to what can be approximated 
•Instruction control can not be approximated



How can we get rid of exact instruction 
bookkeeping? 



How can we get rid of exact instruction 
bookkeeping? 

If behavior is approximate, why program it 
precisely? 



Compiler

EnerJ

Truffle NPUtraditional 
architecture

neural 
networks 

as accelerators

language for 
where-to-

approximate
Monitoring

dynamic 
quality 

evaluation

Application



Compiler

EnerJ

Truffle NPUtraditional 
architecture

neural 
networks 

as accelerators

language for 
where-to-

approximate
Monitoring

dynamic 
quality 

evaluation

Application



CPU

Why Neural Networks as Approximate Accelerators? 

Neural Acceleration of General-Purpose Approximate Programs, MICRO 2012 
General-Purpose Code Acceleration with Limited-Precision Analog Computation, ISCA 2014



CPU

Very efficient hardware 
implementations!

Trainable to mimic 
many computations!

Recall is imprecise.

Why Neural Networks as Approximate Accelerators? 

Fault tolerant 

[Temam, ISCA 2012]

Neural Acceleration of General-Purpose Approximate Programs, MICRO 2012 
General-Purpose Code Acceleration with Limited-Precision Analog Computation, ISCA 2014



Program

Neural acceleration



Neural acceleration

Program

Find an approximate 
program component



Program

Neural acceleration

Find an approximate 
program component



Program
Compile the program 
and train a neural network

Neural acceleration

Find an approximate 
program component



Program
Compile the program 
and train a neural network

Execute on a fast Neural 
Processing Unit (NPU)

Neural acceleration

Find an approximate 
program component



An example: Sobel filter

@approx float grad(approx float[3][3] p) {!
  …!
}!

edgeDetection()
void edgeDetection(aImage &src,!
                   aImage &dst) {!
  for (int y = …) {!
    for (int x = …) {!
      dst[x][y] =!
           grad(window(src, x, y));!
    }!
  }!
}!

@approx float dst[][];



An example: Sobel filter

@approx float grad(approx float[3][3] p) {!
  …!
}!

edgeDetection()
void edgeDetection(aImage &src,!
                   aImage &dst) {!
  for (int y = …) {!
    for (int x = …) {!
      dst[x][y] =!
           grad(window(src, x, y));!
    }!
  }!
}!

@approx float dst[][];

Approximable√
Well-defined inputs and outputs√



Empirically selecting 
target code

Program



Empirically selecting 
target code

Program Accelerated 
Program

√

√
✗



Empirically selecting 
target code

Program Accelerated 
Program

√

√
✗

Each region of code leads to a different NN configuration. 



Neural Processing Unit

Core NPU

input

output

configuration
enq.c
deq.c

enq.d

deq.d



A digital NPU
Bus 

Scheduler

Processing 
Engines

input

output

scheduling



A digital NPU
Bus 

Scheduler

Processing 
Engines

input

output

scheduling

Many other implementations
FPGAs 

Analog 

Hybrid HW/SW 

SW only? on GPUs? 

...



1,079 
static x86-64 
instructions

60 neurons 
2 hidden layers

88 static 
instructions

18 
neurons

triangle 
intersection

edge 
detection

How do the NNs look like in practice?

56% of dynamic 
instructions

97% of dynamic 
instructions



1,079 
static x86-64 
instructions

60 neurons 
2 hidden layers

88 static 
instructions

18 
neurons

triangle 
intersection

edge 
detection

How do the NNs look like in practice?

56% of dynamic 
instructions

97% of dynamic 
instructions

oj = sigmoid( wjix ji
i
∑ )



Summary of results

2.3x average speedup 
Ranges from 0.8x to 11.1x

3.0x average energy reduction for digital, ~10x for analog 
All benchmarks benefit

Quality loss below 10% in all cases 
Based on application-specific quality metrics

Just one possible design. Many others possible. Analog is where the big gains are 
likely (~10x+). 
Key here is algorithmic transformation that enables new more efficient execution 
models.  



Language

Compiler

Architecture

Circuits

Application

EnerJ

Truffle NPUtraditional 
architecture

neural 
networks 

as accelerators

Approximate

Storage Prototype

Monitoring

Approximate

Wireless

language for 
where-to-

approximate

dynamic 
quality 

evaluation



Language

Compiler

Architecture

Circuits

Application

EnerJ

Truffle NPUtraditional 
architecture

neural 
networks 

as accelerators

Approximate

Storage Prototype

Monitoring

Approximate

Wireless

language for 
where-to-

approximate

dynamic 
quality 

evaluation





Approximate mass storage with Flash 
and PCM Approximate Storage in Solid State Memories [MICRO’13]



Approximate mass storage with Flash 
and PCM Approximate Storage in Solid State Memories [MICRO’13]

Cells wear out 
over time



Approximate mass storage with Flash 
and PCM Approximate Storage in Solid State Memories [MICRO’13]

Cells wear out 
over time

Multi-level cells are 
slow or unreliable



Approximate mass storage with Flash 
and PCM Approximate Storage in Solid State Memories [MICRO’13]

Cells wear out 
over time

Multi-level cells are 
slow or unreliable

Use worn-out memory for 
approximate data instead 
of throwing it away.



Approximate mass storage with Flash 
and PCM Approximate Storage in Solid State Memories [MICRO’13]

Cells wear out 
over time

Multi-level cells are 
slow or unreliable

Use worn-out memory for 
approximate data instead 
of throwing it away.

Trade off accuracy for 
performance/density in 
multi-level cell accesses.



Precise Multi-level Cells

high

low

probability

00

11

01

10



high

low 00

11

01

10

probability

Approximate Multi-level Cells



Typical Trade-off in Multi-Level Cells

Fast Dense



Adding a New Trade-Off Axis

Fast Dense

Accurate



Approximate Wireless Communication



precise

Approximate Wireless Communication



approximable

precise

Approximate Wireless Communication



approximable

precise

Approximate Wireless Communication



approximable

precise

Approximate Wireless Communication

●

●

● ●
● ● ● ● ●

●

●

●

●

●

● ●● ● ● ● ●
●

●

●

●

●

●
●● ●

●
●

●
●

●

●

0

10

20

30

40

6 12 18 24 30 36 42 48 54

WiFi Bitrate (Mbps)

Fr
am

es
 R

et
ra

ns
m

itt
ed

 (%
)

< 3% of bits 
are bad!



approximable

precise

Approximate Wireless Communication

●

●

● ●
● ● ● ● ●

●

●

●

●

●

● ●● ● ● ● ●
●

●

●

●

●

●
●● ●

●
●

●
●

●

●

0

10

20

30

40

6 12 18 24 30 36 42 48 54

WiFi Bitrate (Mbps)

Fr
am

es
 R

et
ra

ns
m

itt
ed

 (%
)

< 3% of bits 
are bad!

Configurable-quality wireless protocol. Quality 
automatically set by the data type.



Neural Acceleration on a 
programmable SoC

Dual-core 
ARM NPU

I/O, 
memory controller



Showing End-to-End benefit
Mobile Vision/Augmented Reality 
Linux on Zynq SoC (ARM CPU + FPGA)

Measure 
Energy Savings

Measure 
Speedup

Evaluate 
User Experience

Evaluate 
Programmer Effort

Neural 
Accelerator

Compiler 
Support

Approx. 
FPGA+ +



How will approximate computing  fail?
•Applications can’t take advantage of approximation 
opportunities 
•Programmers aren’t able to write/debug/test approximate 
code 
•Quality assurance problems 
•Marketing reasons: “buy my flaky system!” 
!



How will approximate computing  fail?
•Applications can’t take advantage of approximation 
opportunities 
•Programmers aren’t able to write/debug/test approximate 
code 
•Quality assurance problems 
•Marketing reasons: “buy my flaky system!” 
!



How will approximate computing  fail?
•Applications can’t take advantage of approximation 
opportunities 
•Programmers aren’t able to write/debug/test approximate 
code 
•Quality assurance problems 
•Marketing reasons: “buy my flaky system!” 
!



How will approximate computing  fail?
•Applications can’t take advantage of approximation 
opportunities 
•Programmers aren’t able to write/debug/test approximate 
code 
•Quality assurance problems 
•Marketing reasons: “buy my flaky system!” 
!



Other ongoing effort
•Understanding specialization vs. approximation benefits 
•Compiler-only approximation w/ unsound 
transformations 
•HCI aspects: how do measure user satisfaction? do 
incentives matter in choosing quality? 
•Language support for QoR (quality of results, 
probabilistic assertions) 
•Tools to help programmers w/ porting, testing and 
debugging 
•Exploring uses in energy-harvesting-based devices 
•approxbench.org 

http://approxbench.org


Conclusion

Our goal is to exploit approximate computing across the 
system. (compute, storage, communication)

Key aspect is co-designing programming model with 
approximation techniques: disciplined approximate programming. 

Early results encouraging. Approximate computing can 
potentially save our bacon in a post-Dennard era and be in the 
survival kit for dark silicon. 

We need to exploit application properties and co-design hardware-
software for better efficiency. 

Getting closer to physics might lead to very big efficiency gains.



sa    pa

Luis Ceze University of Washington

Thanks!
luisceze@cs.washington.edu

mailto:luisceze@cs.washington.edu

