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Abstract
The popularization of video capture devices has created
strong storage demand for encoded videos. Approximate
storage can ease this demand by enabling denser storage at
the expense of occasional errors. Unfortunately, even mi-
nor storage errors, such as bit flips, can result in major vi-
sual damage in encoded videos. Similarly, video encryption,
widely employed for privacy and digital rights management,
may create long dependencies between bits that show little
or no tolerance to storage errors.

In this paper we propose VideoApp, a novel and effi-
cient methodology to compute bit-level reliability require-
ments for encoded videos by tracking visual and metadata
dependencies within encoded bitstreams. We further show
how VideoApp can be used to trade video quality for storage
density in an optimal way. We integrate our methodology
into a popular H.264 encoder to partition an encoded video
stream into multiple streams that can receive different lev-
els of error correction according to their reliability needs.
When applied to a dense and highly error-prone multi-level
cell storage substrate, our variable error correction mecha-
nism reduces the error correction overhead by half under
the most error-intolerant encoder settings, achieving qual-
ity/density points that neither compression nor approxima-
tion can achieve alone. Finally, we define the basic invari-
ants needed to support encrypted approximate video storage.
We present an analysis of block cipher modes of operation,
showing that some are fully compatible with approximation,
enabling approximate and secure video storage systems.

CCS Concepts •Computer systems organization→ Re-
liability; •Hardware → Memory and dense storage;
•Security and privacy → Security requirements; Digital
rights management; •Computing methodologies → Im-
age compression

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’17 April 8–12, 2017, Xi’an, China.

c© 2017 ACM. ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037718

Keywords Approximate Storage; Video Encoding; Multi-
Level Cells; Encryption

1. Introduction
Images and videos have been growing in importance and
are now prominent consumers of storage in both personal
and cloud environments [7]. Trends such as personal action
cameras, the use of 360 degrees video, and virtual reality
are expected to exacerbate video storage needs even fur-
ther [19], calling for dense and economical large scale stor-
age of videos.

Approximate storage enables increases in storage density
for data items that do not need bit-by-bit precision [5, 17].
For example, single bit flips in raw images affect only a
small portion of the image, many times being imperceptible.
However, when encoded and stored approximately, these im-
age files may suffer large distortions. This happens because
when an image is encoded, each bit carries more information
than bits in a raw image, and many pixels depend on that in-
formation. Moreover, errors in different bits typically have
different impact on the quality of the decoded output. Guo et
al. have shown that one particular class of image encoding
algorithms can be adapted to partition bits by importance and
apply different levels of approximation to each category [5].
The result is higher image storage density with little quality
degradation.

Approximate storage of video brings additional chal-
lenges. First, in addition to the spatial and encoding de-
pendences already present in encoded images, video also
presents temporal dependences. As a result, a single bit car-
ries an order of magnitude more visual information com-
pared to images. To illustrate the problem, a single bit flip
can severely damage 5 seconds (100-300 frames) of a video.
Second, due to digital rights management (DRM), and for
privacy reasons, videos often need to be encrypted. Unfor-
tunately, the common encryption algorithms affect the ap-
proximability of encrypted content by creating an additional
layer of dependences between bits.

To tackle the above challenges, in this paper we study dy-
namic data dependences in H.264-coded videos to track the
propagation of errors induced by bit flips, based on which we
compute the importance of each bit with respect to the visual
damage flipping that bit would cause. We add an analysis



framework to the encoder as a post-processing step to assign
the optimal approximation level for each class of bits based
on the impact they have on the integrity of other data and the
overall video quality. Finally, we partition encoded videos
into multiple streams, storing each of them with a differ-
ent level of error correction according to its reliability needs
(i.e., approximation tolerance). We further study the security
requirements for approximate video storage, analyze multi-
ple modes of a popular encryption algorithm, AES, and show
how to encrypt videos while still preserving the ability to ap-
proximate them.

To evaluate our approximate storage scheme for videos,
we integrate VideoApp into a widely used open-source H.264
VideoLan encoder [3]. We show that with a dense but unreli-
able storage substrate, multi-level cell (MLC) phase-change
memory (PCM), it is possible to eliminate 47% of the er-
ror correction overhead under the most error-intolerant en-
coder settings. As a result, we achievie an improvement of
2.57x in density compared to single-level cell (SLC) stor-
age and 12.5% improvement compared to MLC storage with
uniformly applied error correction, while only affecting the
quality by less than 0.3dB, and while preserving the ability
to encrypt the contents.

The rest of the paper is organized as follows: Section 2
provides the background on approximate storage and video
encoding. In Section 3, we study the propagation of bit-flip
induced errors in H.264-encoded videos. Section 4 presents
VideoApp, a practical methodology for approximate stor-
age of videos, and Section 5 discusses encryption for ap-
proximate video storage. Section 6 describes our evaluation
methodology and Section 7 presents the evaluation results.
In Section 8 we discuss how relaxing our conservative as-
sumptions can further increase storage gains. Related work
is presented in Section 9 and Section 10 concludes the paper.

2. Background
2.1 Approximate Storage
Not all information needs to be stored precisely. Many appli-
cations, such as machine learning and signal processing are
already noise-tolerant due to inherently noisy inputs. They
can also leverage the fact that human senses many times
cannot perceive imperfections in the output. For such ap-
plications, providing a fully precise storage substrate can
be a waste; approximate storage is sufficient [17]. How-
ever, certain applications already exploit limitations in hu-
man senses to deterministically encode the data and create a
smaller storage footprint. Applying approximate storage to
their encoded data indiscriminately may create unacceptable
outputs.

Prior work has studied how to apply approximate storage
to progressively encoded images [5]. Progressive image en-
coding creates multiple bitstreams, where each subsequent
bitstream is used to refine the quality produced by the previ-
ous bitstreams in an iterative manner. The main observation

was that, in a progressively encoded file, bits that are created
in later iterations of the quality refinement process inherently
have less impact on the quality of the output compared to the
initial bitstream, and consequently, lower reliability require-
ments. Guo et al. leveraged this observation to partition bits
in progressively encoded images into three categories, very
important, important, and not important, and assign different
levels of error correction to them to achieve higher storage
density [5]. The storage substrate used by Guo et al. is a
multi-level PCM tuned to minimize error rate for a partic-
ular refresh rate. In this paper we assume the same storage
substrate.

2.2 Multi-Level Cell (MLC) Memories
MLC memories provide a mechanism to increase density
at the device level by storing more than one bit per cell.
Resistive memories, such as PCM, are written by applying
strong currents to a cell, altering the physical structure of
the material and significantly changing its resistance. The
cell content is read by running a current/voltage through
the cell and sensing the resulting voltage/current. A single-
level cell may store one of two values depending on the
resistance, whereas multi-level cells are implemented by
further dividing the available resistance range into more than
two levels, increasing the density commensurately.

Designers working on MLCs have to make difficult
choices in trading off density, cost, and reliability of such
memories. To make these cells precise (i.e., with extremely
low error guarantees, usually 10−16), they need to include
more sensitive and advanced circuitry to detect minute dif-
ferences in resistance, prevent or account for resistance
drifts, which is costly. A common alternative is to use
cheaper circuitry and apply advanced error correction to
the entire storage [18]. The cell design complexity is re-
duced, but at the cost of additional storage overhead for
error correction codes, which can be significant for a dense
and error-prone substrate.

Approximation relaxes error rate requirements on the
cells and allows designers to tune the reliability of cells to
the type of data that they are to store. For example, Guo et al.
have used approximation to tune a MLC PCM substrate for
images [5]. Two types of errors affect the accuracy of PCM:
write/read errors, related to the access circuitry, and drift-
induced errors that reflect non-linear drifts in resistance over
time. To minimize overall cell error rates, Guo et al. first ap-
ply non-uniform partitioning of the cell resistance range into
multiple levels to account for non-linear resistance drifts,
and then equalize write/read error rates with drift error rates
for a particular scrubbing frequency (three months by de-
fault). Then, they modify a variant of the JPEG-XR encoder
to partition data with different levels of importance into three
categories. Finally, they study what level of approximation
(i.e., error rates) each category can tolerate without allowing
the overall quality to degrade by more than 1dB. The result
is a very dense MLC PCM substrate that selectively uses
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Figure 1. Example of predictive metadata coding of motion
vectors. The blue dashed lines correspond to the motion
vectors for MBs A, B, and C. The motion vector for MB
D is predicted based on the vectors for A, B, and C, and
its predicted value is shown in red. Only ∆x and ∆y, which
compensate for any misprediction, will be encoded.

error correction only where needed, improving density and
resulting costs.

2.3 Video Encoding
Video encoding includes a variety of lossless and lossy video
compression techniques. In this paper, we study lossy video
encoding techniques due to their widespread use and their
ability to achieve far better compression ratios with tolerable
quality loss. In particular, we focus on one of the most com-
monly used formats, H.264/MPEG-4 AVC [2], widely used
both for video storage and streaming [15]. Our methodology,
however, applies to most modern video encoders.

2.3.1 Frames and Macroblocks
H.264 encodes videos frame by frame, creating three types
of coded frames. I-frames are self-contained; they depend
only on the previously encoded content within the same
frame, similar to images. Being limited to spatial prediction
(intra prediction), I-frames have the lowest compression ra-
tios, and encoders periodically insert them as checkpoints
to refresh the stream and limit the propagation of eventual
errors, at the expense of extra storage. Between I-frames en-
coders create many P- and B-frames, whose content is pre-
dicted based on their similarity to other frames. Frames are
further divided into 16x16 pixel groups called macroblocks
(MB), which are the basic encoding units. An encoded frame
consists of a header, which holds information that applies to
the entire frame, and its MBs, which are encoded one by one
in the raster scan order—i.e., row by row, from left to right,
starting from the top let corner of the frame.

2.3.2 Encoding stages
H.264 encoding features two major and mutually dependent
stages [2, 15]. During the first stage, the encoder seeks to
find high visual redundancy between spatially or tempo-
rally correlated groups of pixels, and computes pixel-by-
pixel differences between them (pixel-level prediction and
compensation). It leverages the fact that neighboring pixels
have highly similar values, both within a frame and across
consecutive frames. For example, the pixel values for mac-
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Figure 2. a) Coding dependency pattern between MBs, b)
Error propagation and the affected frame area in the ideal
case, and c) Actual error propagation pattern within a frame.

roblocks A, B, and C in Figure 1 can be better compressed
in the next stage if represented as a difference to the most
similar respective regions of the same size in a previous
frame, together with the motion vectors (dashed blue lines)
that identify those regions in the previous frame. The sec-
ond stage of the process (coding) seeks to compactly en-
code the values determined by the first stage and produces
the coded bitstream. If the resulting frame size violates qual-
ity/compression rate targets, the encoder will iteratively seek
to find better solutions by looking for alternative visual re-
dundancies in the first stage that could lead to more compact
coded bitstreams in the second stage.

The coding stage involves several tasks. The encoder first
transforms the computed pixel differences into a frequency
domain using the Discrete Cosine Transform, achieving a
significant compression ratio at the expense of negligible
quality losses (transformation). It further performs con-
trolled quantization of the resulting transform coefficients
to store them more compactly (quantization). Quantization
provides the main quality/storage control knob for video en-
coding. To encode the video metadata, such as motion vec-
tors or quantization levels, the encoder first performs static
spatial prediction to find the expected metadata values, based
on the corresponding values in surrounding MBs, and then
encodes only the difference between the actual values and
the expected ones (predictive metadata coding). For exam-
ple, neighboring parts of a moving object will likely move
at similar speeds, and the movement of one of them can be
accurately predicted based on the movement of the others.
In Figure 1, the motion vector for currently encoded MB D
is first predicted as a median of the motion vectors corre-
sponding to already encoded surrounding MBs A, B, and
C, and only the difference between the prediction and actual
motion is encoded.1 The final task includes entropy coding,
which losslessly encodes already compressed data in a way
that leverages any remaining predictability, producing the
final bitstream.

2.3.3 Macroblock structure
A coded MB consists of several syntax fields that describe
its content. A MB header defines the type of prediction

1 Macroblocks A, B, and C are always encoded before macroblock D due
to the raster scan order.



used to encode it, which can be spatial (intra-frame) or
temporal (inter-frame). In case of intra prediction, the header
encodes the spatial direction of the prediction, defining the
set of pixels in already encoded surrounding MBs that will
be used as a reference for prediction. In case of temporal
prediction, the MB header defines the list of frames that the
currently encoded MB will reference (one for P-frames, two
for B-frames), along with the motion vectors that define the
referred set of pixels within the referenced frames. After
the header, a MB contains coded quantization parameters,
which define the level of quantization applied to transform
coefficients. Finally, the rest of the bits describe the layout
and values of the quantized transform coefficients.

2.3.4 Entropy Coding
H.264 uses two entropy coding algorithms to produce the
final bitstream: Context-Adaptive Variable-Length Coding
(CAVLC), and Context-Adaptive Binary Arithmetic Cod-
ing (CABAC). On the one hand, CAVLC-encoded videos
require considerably less compute power to encode/decode
and are more error-tolerant compared to CABAC-encoded
ones [15]. On the other hand, CABAC-encoded videos pro-
vide up to 15% better compression [11], while being highly
computationally intensive and showing high sensitivity to
even smallest errors such as bit flips. Although CAVLC
would be a better match for approximate storage, in this
paper we choose to study CABAC, for two main reasons.
First, we wanted to be highly conservative and choose the
most storage-efficient scheme despite its error intolerance.
Second, CABAC is used in all recent and currently devel-
oping standards, such as H.265/HEVC, Google’s VP9, and
Mozilla’s Daala [1], due to its unparalleled compression ef-
ficacy, and it is likely to be the most prevalent entropy coder
in the future.

One of the fundamental advantages of CABAC is its use
of arithmetic coding, which allows coding events to be as-
signed a non-integer code length [11], making it possible
to represent a symbol of high frequency with less than one
bit. Each coded sequence can be assigned a unique range
of rational numbers between 0 and 1, where the width of
the range corresponds to the probability of that sequence
occurring in the current context. CABAC represents each
sequence with the most compact rational number that falls
in the specified range, and in doing so, it makes the length
of each coded sequence inversely proportional to its occur-
ring probability, approaching the theoretical compression
limit established by Shannon’s source coding theorem [10].
CABAC computes the probability of each sequence by mod-
eling a statistical context for each field of each MB in
the current frame. To model the context of a currently en-
coded/decoded MB, CABAC relies on the entropy coder
state in surrounding MBs, as shown in Figure 2(a), respect-
ing the scan order.

3. Propagation of Bit-Flip Induced Errors
A single bit flip in an H.264 video can cause large visual dis-
tortions in many ways. At the lowest level (entropy coder),
sequences are encoded as rational numbers. Upon a bit flip,
the entropy decoder will, in the ideal case, intepret the af-
fected sequence as a different rational number, hopefully
similar to the original one. However, the decoded sequence is
not necessarily semantically similar to the original one [11],
which can cause misinterpretations of arbitrary magnitude.
Moreover, because CABAC is a context-aware coder, the
bit flip will wrongly update the statistical context, chang-
ing the probabilities of zeros and ones that both the decoder
and encoder must consistently maintain for each syntax field.
Changes in the context cause misinterpretation of the same
field in the rest of the frame, following the spatial pattern
shown in Figure 2(b).

The visual manifestation of errors depends on the affected
syntax field. In case the flipped bit corresponds to transform
coefficients, the inverse transformation will amplify the er-
ror, causing unpredictable visual damage within the MB. An
error in quantization parameters will similarly lead to wrong
interpretation of the transform coefficients. An error in mo-
tion vectors will result in referencing a wrong group of pix-
els or a wrong frame. Furthermore, the predictive coding of
metadata fields creates dependencies (Figure 2(a)) that will
propagate any change in the interpretation of metadata, fol-
lowing the pattern shown in Figure 2(b). For instance, to
compute the quantization level for MB D, the decoder first
computes the median of quantization levels applied to al-
ready decoded MBs A, B, and C, forming a prediction of
the quantization level for MB D. It then interprets the coded
quantization level as a difference it needs to add to the pre-
dicted value. A quantization error in any of the surrounding
MBs (A, B, or C) will affect MB D and propagate further.
Notice that the error propagation due to predictive coding
happens on top of the entropy-coding related propagation.

The above analysis assumes that the beginning and the
end of each syntax element in the damaged bitstream can
be properly identified, in which case the affected frame area
is the one shown in Figure 2(b). Unfortunately, the distor-
tions that the entropy decoder accumulates eventually will
leave it out of sync with the encoder, breaking the structure
of the stream and leading to misinterpretation of the subse-
quent syntax elements in the stream, and consequently, to
intractable visual damage that affects the entire area shown
in Figure 2(c). Fortunately, the entropy context is reset at the
beginning of every frame, allowing the encoder and decoder
to resynchronize.

Finally, all the visual damage accumulated within the af-
fected frame will be propagated in both time and space to all
the frames that reference the damaged regions. Such prop-
agation is a consequence of the first encoding step, which
encodes each MB as a difference (pixel-by-pixel) relative to
the most similar previously encoded MB. Unlike the cod-
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Figure 3. Frame PSNR after a single bit flip as a function
of the affected MB position within the frame. The origin
corresponds to the top left corner of the frame.

ing stage, which shows a static error propagation pattern, the
compensation stage propagates errors in the pixel domain
and in a data-dependent way.

We refer to the errors accumulated by the coding stage as
coding errors, and the errors that are the result of the prop-
agation in the pixel domain as compensation errors. Coding
errors are responsible for most of the damage observed in
the frame containing the flipped bit, but their reach is limited
by the frame boundaries. Compensation errors propagate the
visual damage caused by coding errors to other frames by
referencing damaged regions of the source frame, adding
wrong pixel values to correctly decoded pixel differences.
Unlike coding errors, compensation errors will not affect the
interpretation of metadata fields in the affected frames.

3.1 Effects of Coding Errors
As a consequence of the coding error propagation pattern
shown in Figure 2(c), the suffered quality loss highly de-
pends on the spatial location of the affected MB within its
frame. To test this hypothesis, we perform an experiment in
which we inject one bit flip at a time, controlling the location
of the affected MB within the frame, and measure the result-
ing quality loss. The results are averaged over hundreds of
frames per MB position. Figure 3 shows the impact of the
location of the flipped bit on quality. The x and y axes corre-
spond to the coordinates of the affected MB, with point (0, 0)
corresponding to the top left corner of the frame. The quality
is measured as peak-signal to noise ratio (PSNR) relative to
the coded video without bit flips, with higher values corre-
sponding to higher quality. We analyze only frames that use
no intra-prediction to exclude the effects of compensation er-
rors. We conclude that the coding error propagation indeed
matches the pattern shown in Figure 2(c), with the bit flips
occurring in MBs spatially closer to the bottom-right corner
causing much less damage compared to MBs closer to the
top left corner (point (0, 0)).
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Figure 4. Modeling temporal and spatial dependencies.

4. VideoApp
We present VideoApp, a framework that accepts an encoded
video as input and orders all its bits with respect to the vi-
sual damage they would cause if flipped. Because the precise
damage a given bit flip will cause is not possible to determine
in a practical way, we use a heuristic that estimates the num-
ber of macroblocks each bit flip would damage, which we
call importance. Importance is by definition proportional to
the damaged surface area, which correlates well with the ob-
served quality loss for all major metrics. We provide an algo-
rithm that accurately estimates the number of damaged MBs
by tracking dependencies between MBs. V ideoApp creates
a weighted dependency graph, in which the nodes are MBs,
and the edges represent the dependencies between them. The
weight of each edge is between 0 and 1, and it is proportional
to the visual damage that an error in the source MB would
transfer to the destination MB. Having constructed the entire
graph, the tool traverses it backwards to compute the impor-
tance of bits in each MB.

4.1 Modeling Compensation Error Propagation
Compensation errors propagate in the pixel domain by refer-
encing damaged regions, which do not need to be aligned to
MB boundaries. A MB can therefore depend on several other
MBs by referencing a single 16x16 group of pixels. Further-
more, to allow for higher precision, H.264 can use smaller
MB partitions as basic compensation units. These units can
have different sizes, which we model in detail: 16x8, 8x16,
8x8, 4x8, 8x4, and 4x4. Our model assumes that the visual
damage in source MB X will propagage to destination MB Y
to the extent that is proportional to the number of pixels in
MB X that are referenced by MB Y.

The example in Figure 4 illustrates how VideoApp mod-
els temporal and spatial compensation dependencies. For il-
lustration purposes only, the three frames at the top have
each four MBs. MB G in frame i is divided into four par-
titions, and each of them is compensated independently. The
weighted graph at the bottom represents the dependencies
among the depicted frames, with weighted edges represent-
ing the relative area compensated in MB G. Multiple depen-
dencies from one MB to another can be aggregated into a
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Figure 5. Error propagation tree for a bit flip in MB A.

single edge by adding up their weights. This is the case for
edges C→G and L→G in our example. For every MB the
sum of weights of its incoming edges (if any) is always 1.

MB B in frame i-1 is an example of intra-frame predic-
tion, in this case in the horizontal direction. The entire MB
predicted by extrapolating the last column of 16 pixels in
MB A, and the per-pixel difference is encoded for compen-
sation. For certain prediction directions, the set of extrap-
olated pixels may belong to multiple MBs, in which case
we create a weighted edge between each source MB and the
predicted MB, and distribute the weight of 1 across all MBs
proportionally to the number of pixels they contribute.

4.2 Modeling Coding Error Propagation
Coding errors propagate in a static fashion as shown in
Figure 2(c) with all coding edges in one frame forming a
weighted linked list. Because we define importance as the
number of MBs affected by a bit flip, each weight equals 1.
By tweaking the coding weights one can give more (or less)
importance to coding dependencies compared to compensa-
tion dependencies and obtain a more precise estimate of the
visual quality loss as opposed to our heuristics that is based
only on the damaged surface.

4.3 Computing Macroblock Importance
Figure 5 (top) illustrates the error propagation process within
and across frames for a single bit flip that occurs in MB
A in the first frame. Upon a bit flip, coding dependencies
will create visual damage in MBs B, C and D, accord-
ing to the static coding propagation pattern. This damage
will further propagate through compensation dependencies
to other frames, namely to MBs E, J , and K. However, in
those other frames, the damage propagated through compen-
sation dependencies will not cause coding errors, because all
the metadata there can be properly decoded. In other words,
propagation dependencies can be appended to coding de-
pendencies, but coding dependencies cannot be appended to
propagation dependencies.

The bottom part of Figure 5 shows the error propagation
tree that corresponds to a bit flip in MB A. Knowing the
error propagation tree for a MB, one can easily compute its
importance. The basic idea is to initialize all the nodes of the
tree to 1, indicating that only one MB worth of area would be
damaged by a bit flip, which is true only for the leaves of the

propagation tree. Starting from the leaves, we traverse the
propagation tree and update the importance of each MB by
adding the weighted sum of its children, where the weights
correspond to the damaged area transferred to the children.
At the end of this process, the importance of MB A will
reflect the total area (in MBs) to which an error originating
in MB A will propagate. The following algorithm leverages
this observation to compute the importance of each MB
given the entire dependency graph produced by VideoApp:

1. Create a graph containing only compensation dependen-
cies;

2. Initialize the importance of each node (MB) to 1;

3. Sort the graph topologically;

4. Starting from the end of the sorted list, update the impor-
tance of each node by adding the weighted sum of impor-
tances of all children, where the weights are the compen-
sation dependency weights computed by VideoApp. By
the end of this step the importance of each MB will re-
flect the number of MBs to which an error in a given MB
will propagate through compensation;

5. Create a graph containing only coding dependencies;

6. Initialize the importance of each node (MB) to the impor-
tance computed in step #4;

7. Sort the graph topologically;

8. Starting from the end of the sorted list, update the impor-
tance of each node by adding the weighted sum of impor-
tances of all children, where the weights are the coding
dependency weights.

4.3.1 Time and Space Overheads
The proposed methodology is meant to be used only once
per video, during or after encoding. Our implementation in-
curs a 2-3% time overhead relative to encoding, with the
most complex operation being topological sort. The tempo-
rary graph structures can be larger than the corresponding
video when encoded in standard quality, yet they are an or-
der of magnitude smaller than the raw video being encoded.
Moreover, for large videos, both the time and space over-
head can be significantly reduced because the importances
can be independently computed for short sequences between
I-frames, thanks to the streaming nature of videos. Namely,
steps 1–4 do not need to be performed on the entire graph
at once, but instead they can be independently performed on
each connected component between two I-frames. Similarly,
steps 5–8 can be performed independently for each frame.
This allows for efficient and even real-time implementations
of our methodology.

4.4 Assigning Error Correction
Each coded frame consists of a frame header and all MBs en-
coded in the scan order. Because corrupting the frame header
would destroy the entire frame, we assign it the strongest er-
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Figure 6. Dividing a frame into reliability areas through
pivots, respecting the coding error propagation pattern.

ror correction scheme, which corresponds to precise storage
(10−16). To every MB in the frame we assign an error cor-
rection scheme that matches its importance. We establish the
relationship between the importance and error correction re-
quirements empirically across a wide range of videos (Sec-
tion 7). For each scheme, we find the importance threshold
that a MB needs to reach to be protected by that scheme, in a
way that minimizes the quality loss and maximizes the stor-
age benefits. However, the flexibility of fine-grained error
correction assignment implies a high bookkeeping overhead
because it requires keeping track of the correction levels as-
signed to each individual MB, the overhead of which can
be large as the video itself. Instead, we make the observa-
tion that the coding error propagation pattern in Figure 2(c)
imposes a strictly decreasing order of MBs within a frame
with respect to the importance computed by our algorithm.
In other words, a MB will always have higher importance
than the one that succeeds it in the scan order within the
same frame.

The fact that within a frame MBs are sorted by impor-
tance allows us to precisely and compactly describe the im-
portance layout of a frame. Given the importance of each
MB in a frame, and given the importance threshold for each
error correction scheme, we can describe the error correction
level of all MBs in a frame with only a few pivot points that
signal a change in the error correction scheme. Figure 6 il-
lustrates the error correction assignment using pivots. Lever-
aging the importance order of MBs within a frame allows us
to reduce the bookkeeping storage overhead to only a few
bytes per frame. The pivot locations and their importance
threholds are added to the frame header and stored precisely
with the strongest error correction scheme (10−16).

5. Encrypting Approximate Video Storage
Digital Rights Management (DRM), commonly associated
to videos, usually employs encryption to protect the con-
tents. Besides protecting privacy, encryption algorithms of-
ten protect data integrity against tampering, either as a fea-
ture or as a side effect of their efforts to ensure privacy. Un-
fortunately, this also means that for most of today’s storage
encryption schemes corrupting a single bit in an encrypted
file makes the entire file unintelligible. This makes approx-
imate storage of such encrypted videos infeasible because
approximation intentionally allows single bit corruptions. In
this section, we define the requirements for encryption on

top of approximate storage and show how an appropriate en-
cryption scheme can be constructed.

5.1 Encryption Requirements
To allow for approximate storage, an encryption scheme
should:

1. Make the content unreadable to non-authorized parties;

2. Not become completely unreadable due to individual bit
flips, i.e., errors in encrypted bits should not propagate
throughout the rest of the video;

3. Not interfere with the ability to approximate data, i.e.,
approximating an encrypted file should produce output
of the same quality as an already approximated file.

5.2 Finding Compatible Encryption Modes
Storage systems typically use block ciphers to encrypt data,
AES encryption being one of the most popular [14]. Its basic
operation is a substitution-permutation network (subperm in
Figure 7). The network has two inputs, a 16-byte input data
block to encrypt, and the secret encryption key. The key
defines the secret transformation performed by the network
on the input data to produce a 16-byte encrypted output.

Algorithms implementing block ciphers can be used in a
variety of modes [14]. Figure 7 shows four modes of oper-
ation. They differ in whether they use only a substitution-
permutation network or an additional exclusive OR (XOR)
step, how these steps are arranged, and whether the com-
putation of blocks depends on computation from previous
blocks.

Electronic Codebook (ECB ) is the simplest of them. It
takes plaintext and the key as inputs and returns ciphertext.
Despite making each of the blocks unreadable, it is vulnera-
ble to dictionary attacks over the collection of blocks, since
a particular 16-byte value will always be encrypted to the
same target value. It thus fails requirement #1 above. To ad-
dress this problem, Cipher Block Chaining (CBC) uses the
ciphertext from the previous block to further randomize the
current value using XOR. The effect is that a single plain-
text value can result in a large number of ciphertext values,
making the blocks collectively unreadable and finally meet-
ing requirement #1. However, this mode fails requirements
#2 and #3 because now when an error occurs in ciphertext,
it propagates to all subsequent blocks.

Output Feedback (OFB) and Counter-Mode (CTR) meet
all requirements. OFB differs from CBC in that, instead of
creating a dependence through the previous block’s cipher-
text, it creates a dependence through an initial seed value
processed by the substitution-permutation network multiple
times, more specifically once per block (previous subperm’d
value). While making the video unreadable, its dependence
propagation is done independently of the value that is stored
as ciphertext. In other words, as long as the key and the ini-
tial value are intact, errors in ciphertext storage do not prop-
agate to later blocks, i.e., the error affects only the flipped
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Figure 7. Various block encryption/decryption modes: (a) Electronic Codebook (ECB); (b) Cipher Block Chaining (CBC);
(c) Output Feedback (OFB); and (d) Counter-mode (CTR). Boxes named subperm represent a substitution-permutation
network and boxes named invsubperm represent their inverse function.

bit. Finally, CTR offers the same properties, this time propa-
gating the dependence implicitly via a counter that is incre-
mented for every block.

Generalizing, modes appropriate for use with approxi-
mate video storage need to randomize the mapping between
plaintext and ciphertext values while not creating chains of
values that are kept in approximate storage (i.e., ciphertext).

5.3 Encrypting Multiple Streams
Approximate video storage splits data into multiple streams
during encoding and creates the metadata needed to merge
the streams in the header of each frame, which is kept in
precise storage. After encoding, each of these streams is
encrypted separately. If an initial value is required to seed the
encryption, it is derived from a single value for all streams
pre-appended to each stream’s identifier. It is important to
note that our approximation methodology must be applied
before encryption, and therefore it must be trusted.

6. Evaluation Methodology
We use VideoApp for two purposes: first, to profile a set of
videos at a wide range of quality targets and establish the tar-
get approximation levels, and second, to separate the original
bitstream into multiple bitstreams according to the selected
approximation levels. For evaluation purposes, we integrate
VideoApp with a widely used open-source VideoLan H.264
video encoder [3]. Our methodology, however, works with
any H.264 encoder.

6.1 Metrics
We evaluate the proposed scheme through a combination of
two metrics: peak-signal to noise ratio (PSNR), averaged
across frames, and storage density. Average PSNR is com-
monly used in the video processing community to measure
the quality of reconstructed videos. It compares the origi-
nal video—frame by frame, pixel by pixel—against the de-
coded video that contains errors from lossy compression
(e.g., quantization) and the storage system (in our case, un-

corrected read/write and drift errors). The higher the PSNR,
the smaller the difference between the original and the re-
constructed video. While we present the results only for
PSNR, we also studied other metrics supported by our qual-
ity measurement tool [13], which include Structural Similar-
ity (SSIM), Multi-Scale Structural Similarity (MS-SSIM),
and Visual Information Fidelity (VIFP). For all metrics we
measure the average value across the frames, following the
established practice. We found that our methodology relates
well to all of these metrics in case of bit-flip related distor-
tions, but we only report average PSNR for space reasons.
Although SSIM may produce better correlation with subjec-
tive results [21], the improvement is not significant, espe-
cially in the context of approximate storage. A recently an-
nounced subjective metrics from Netflix [20] shows promis-
ing results, but it is specifically tailored to exclude quality
assessment in case of errors in the bitstream and is therefore
not suitable for our study. In contrast, PSNR is well under-
stood and can be more meaningful in applications where the
consumer of the decoded video can be an analytics or ma-
chine learning system, rather than a human observer.

The standard storage density metric in the multimedia
community is the number of pixels per bit. Because we use
multi-level cells, we define the storage density as the average
number of pixels that can be stored in a single cell.

6.2 Storage substrate
We use a highly optimized multi-level cell PCM substrate [5]
that minimizes the overall error rate by biasing the level
ranges so as to equalize the error rate at each level with the
resistance drifts accumulated over the scrubbing (refresh) in-
terval of 3 months. The resulting substrate achieves an error
rate of 10−3 with 8 levels per cell, providing a 3x higher
density at the expense of frequent errors. To provide dif-
ferent reliability levels, we add a variable amount of ECC
to different bits, but store them all in the same substrate to
minimize the cost. We use advanced BCH-X error correction
codes, where X denotes the number of errors the code can
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Figure 8. Error correction overhead (left) and capability
(right) for 512-bit blocks with a raw bit error rate of 10−3.

correct within the storage block it protects, which include
both the data block and the code metadata (the codes are
self-correcting). Figure 8 shows the codes used, their stor-
age overhead, and their error correction capability given a
storage substrate with raw bit error rate of 10−3. For exam-
ple, BCH-6 can correct up to 6 errors in a 512-bit PCM block
(plus 60 bits of metadata), and for a raw bit error rate of 10−3

it produces the resulting uncorrectable error rate of around
10−6 with an 11.7% storage overhead.

6.3 Input videos and Encoding Parameters
Our quality measurements are done on a collection of 14 raw
video sequences distributed by Xiph.Org Foundation [22].
The sequences are 500-600 frames long, capturing 50-60
frames per second, and their resultion is 1280x720. Setting
encoding parameters in H.264 video encoding is a complex
task: unlike image quality, video quality is rarely controlled
by setting a target PSNR or quantization because the en-
coder will encode fast moving objects more aggressively to
leverage the fact that human eyes cannot perceive high lev-
els of details in them. We therefore control the video qual-
ity using the constant rate factor (CRF) [12], following the
common practice in the video compression community, and
evaluate our scheme at three quality targets: standard qual-
ity (CRF=24), high quality (CRF=20), and very high quality
(CRF=16). Setting quality via CRF has a high correlation
with both PSNR and subjective visual quality [12].

6.4 Simulation
We conduct Monte Carlo simulations to model read- and
write-induced errors caused by circuit imprecision. Due to
the nondeterministic error patterns, we run each video in
the suite through our stochastic model 30 times, with errors
appearing at random locations every time. For low error rates
(3-4 errors per video), we make sure that the number of
errors per video follow the binomial distribution across 30
runs. For very low error rates (e.g., 10−12), we make sure
that at least one bit flip happens in each video, and then scale
down the quality loss by multiplying it by the probability that
the error happens within the video of a given size.

Table 1. Error Correction Assignment.
Importance Scheme Error rate Overhead
0-2 None 10−3 -
3-10 BCH-6 10−6 11.7%
11-13 BCH-7 10−7 13.65%
14-16 BCH-8 10−8 15.6%
17-20 BCH-9 10−9 17.55%
21-26 BCH-10 10−10 19.5%
frame header BCH-16 10−16 31.3%

We decode approximate videos using the ffmpeg library,
and evaluate the quality using the VQMT video quality mea-
surement tool [13]. Importantly, we report the maximum
(rather than the average) quality loss for each video, which
gives us a highly conservative estimate of the quality loss.

7. Evaluation
7.1 Methodology Validation
Given a H.264-coded input video, VideoApp outputs per-MB
importance corresponding to the number of blocks a bit flip
in that macroblock would affect. For the set of videos we
consider, the estimated importance of MBs largely varies,
ranging from 1 to 226. To validate the tool and to test our
hypothesis that the definition of importance above relates
to the visual quality loss, we need to verify that flipping
bits in MBs of lower importance, as computed by the tool,
will cause less damage compared to bit flips occurring in
MBs of higher importance. To do so in a practical way,
we set up the following experiment: we sort all MBs in
a video by importance, and then divide them into 16 bins
equal in storage so that the first bin (bin 0) contains the least
important MBs (as computed by the tool) that make 1/16h
of the total bits in the video. Every subsequent bin contains
the next set of least important macroblocks. The last bin,
bin 15, contains the 1/16th bits of highest importance. We
inject errors in one bin at a time, while keeping the other
bins precise so that we can directly compare the quality
loss from bins of different importance. The bins are equally
sized to ensure that differences in quality do not come from
differences in the number of bit flips in each bin.

Figure 9(a) shows the visual quality degradation for dif-
ferent bins (labelled 0 to 15) as we vary the error rates on
the x-axis, whereas Figure 9(b) shows the maximum MB
importance in each bin on a logarithmic scale (base 2). The
similarity between bins (right) is correlated with the gaps be-
tween quality degradation curves (left). Independent of the
gap size, the order of the quality degradation curves on the
left strictly follows the bin importance order on the right.
We conclude that the MB importance levels computed by
VideoApp correlate well with objectively measured quality
degradation.
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7.2 Assigning Error Correction To Importance Classes
Our next goal is to relate the MB importance to the required
error correction scheme, while minimizing the quality loss
and maximizing the overall storage savings. To do so, we
need to consider the importance of MBs, the storage they
occupy, the quality loss of approximation at a given error
rate, the overhead of error correction needed to guarantee
the given error rate, and the target quality loss budget.

We first size our quality loss budget so that the worst
case quality loss due to approximation is always less than
the quality loss we would get with deterministic compres-
sion (encoding) for the same storage savings. Given that our
storage savings are on the order of 10-15% depending on the
error correction assignment, and given that for the same stor-
age reduction the encoder can deterministically compress the
videos and lose between 0.4 and 0.6dB in quality, we set
the quality loss limit to 0.3dB to guarantee that approxima-
tion will always reduce the quality by less than compression
would do when judged by an objective quality metric.

To decide how to optimally distribute our quality loss
budget, we set up an experiment in which we classify the
MBs into importance classes on a logarithmic scale, so that
class i contains all MBs whose importance is no greater
than 2i. Figure 10(a) shows the cumulative quality loss (in
the quality region of interest) as a function of the error rate
for different MB importance classes. For example, the first
class contains MBs of importance less or equal than 2. Fig-
ure 10(b) shows the fraction of storage that each importance
class occupies (also cumulative). To keep the figure readable,
we omit a few importance classes that occupy a negligible
amount of storage.

The information in Figure 10 and Figure 8 is sufficient to
decide on the right correction scheme for each importance
class given the quality loss budget. Because the graph on
the left shows cumulative quality loss, we can easily com-
pute how much quality we would lose if we choose to assign
one error correction scheme to class i and a weaker one to
class i− 1 by doing a simple subtraction. We first distribute
our 0.3dB budget to importance classes proportionally to the
amount of storage they occupy to maximize the storage sav-
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Figure 11. Overall storage benefits of approximation as-
suming a storage scrubbing (refresh) interval of 3 months.

ings on error correction. We then start with the lowest impor-
tance class, and choose the weakest error correction scheme
that would cause a quality degradation that is in within the
limit assigned to it. Once class i is assigned its correction
scheme, we move on to class i + 1, and assign it the weak-
est correction scheme that will keep the quality loss within
its assigned limit, where the quality loss excludes the bits
covered by the previous class. At the end of this algorithm,
the quality loss will be distributed across importance classes
in a way that chooses the weakest error correction scheme
for each class and guarantees the maximum storage savings.
The error correction schemes we apply to importance classes
based on the above algorithm are listed in Table 1. If needed,
the number of error correction schemes can be easily re-
duced by upgrading the correction scheme that protects the
fewest bits to a stronger one. Importantly, the metadata be-
longing to frame headers is kept precise, by assigning them
the strongest error correction scheme (BCH-16, 10−16 error
rate with 31.3% overhead). Fortunately, these bits amount to
less than 0.1% of the total storage.

7.2.1 Alternative Approximation Strategies
Instead of maximizing the storage gains under a pre-allocated
quality loss budget, we could assume an alternative correc-
tion scheme assignment strategy. Namely, whenever we need
to decide whether to protect a class of bits with a stronger
scheme or with a weaker one, we could check whether the
storage gains under the weaker scheme justify the quality
loss when compared to compression. In other words, we go
for approximation only when it shows a clear win against
compression, otherwise we employ further compression.
Such a conservative strategy could result in slightly better
quality/density points.

7.3 Overall Storage Gains
Figure 11 shows the storage density expressed as the number
of cells per image pixel for three designs. All designs assume
an optimized PCM substrate with 8 levels per cell, with the
levels optimally biased to minimize the overall error rate [5].
The first design uses uniformly applied error correction to

the entire storage, guaranteeing an error rate of at most
10−16. The second design applies variable error correction
based on importance computed by VideoApp. The last design
assumes a perfect error correction scheme that correct all
errors with no storage overhead. Overall, by applying error
correction in an optimal way we were able to eliminate 47%
of the error correction overhead and save 12.5% in storage
with strict quality loss guarantees. Compared to a highly
reliable single-level cell design with no error correction, we
provide 2.57x higher density.

Interestingly, we find that increasing the quality of a video
slightly reduces our ability to approximate it. Our intuition
was exactly the opposite: larger videos carry less informa-
tion per bit and should be more tolerant of bit flips. How-
ever, a higher quality video contains larger frames, which
increases the probability of error in each frame for a fixed
error rate, affecting more frames and causing more damage
for CABAC-coded videos. Our error correction assignment
for the highest video quality is therefore slightly more con-
servative and results in storage savings of 12.3%. We believe
that the observed quality/approximability relationship may
be different for other entropy coders.

8. Discussion
H.264 provides the option to limit the coding error propa-
gation in videos by dividing each frame into several slices.
Each slice uses a separate entropy context and does not rely
on other slices for predictive coding, limiting the propaga-
tion of coding errors to the slice boundaries at the expense
of extra storage. We deliberately decided not to use more
than one slice per frame to remain highly conservative and
to be able to establish the lower bound for the benefits of
approximation in the context of video storage.

Similarly, using the other entropy coder available in
H.264, CAVLC, would significantly reduce the effects of
errors. In fact, CAVLC is recommended for applications
with frequent errors [15]. However, it does so at a significant
storage price (10-15% [11]). We decided to use CABAC, de-
spite its known error intolerance, to remain conservative, and
to be able to give a definitive answer to the question “Can
approximation bring higher objectively measured benefits
compared to deterministic video compression?” The answer
is yes. However, moving beyond this question, a more ap-
propriate use of VideoApp would likely be in combination
with CAVLC, in which case one could achieve the storage
efficiency of CABAC (given the benefits of approximation),
and low computational complexity and high error resilience
of CAVLC. In combination with slicing, the overall storage
gains would likely approach the ideal curve in Figure 11.

Finally, we would like to raise the following question:
is it possible to design the first stage of video compression
(prediction and compensation) in a way that increases the
opportunity to approximate videos? We pick this stage, be-
cause it is the one that gives the freedom to encoders to



compete, whereas the other components are set in stone by
the standard. For example, H.264 provides a flag to disal-
low B-frames to be used as references, effectively creating
many unreferenced frames in which errors cannot propagate
to other frames. The amount of unreferenced storage can be
further increased by biasing the encoder to create more B-
frames, and thus, even more unreferenced frames. After ex-
perimenting with such options, we found that many of the
quality loss curves in Figure 9 and Figure 10 would signifi-
cantly shift to the right, tolerating higher error rates. The re-
sulting videos were highly polarized into important and less
important bits, which is ideal for approximation. At the same
time, as expected, these encoding options often produce sub-
optimal solutions and increase the storage, sometimes can-
celling out the benefits of the increased approximability, but
other times resulting in a better overall solution, leaving us
without a clear conclusion. Our question to the video com-
pression community is: what would the encoding process
look like if it were given an extra metric to optimize for,
which is to produce a more approximable video?

9. Related Work
This work is inspired by approximate storage [17] and ap-
proximate image storage [5]. We use the same technolog-
ical assumptions about the approximate storage hardware,
but we focus on videos instead of raw data or just images.
In their approximate image store study, Guo et al. were able
to achieve bigger storage gains [5]. Their study focused on
a progressive image format that already separates bits into
importance classes, with each subsequent class being used
only to refine the image. The format they use limits the er-
ror propagation by design not only to the image boundaries,
but also to a smaller region within the image. Unfortunately,
videos are much more sensitive to errors because the errors
propagate through the entire frame (see Figure 3) and well
beyond the frame in which they occur. Note that their work
is orthogonal to ours: videos could be also encoded in a “lay-
ered” way, where each layer refines the quality produced by
the previous (scalable video coding). Our work focuses on
approximation within a layer, and is trivially extensible to
multiple layers by adding another dimension of approxima-
tion. In contrast, the work of Guo et al. [5] primarily focuses
on differences in reliability across layers.

Guo et al. [6] and Frescura et al. [4] used variable error
protection to protect images and videos against transmission
channel errors. They use variable coding and redundancy
depending on which part of the bitstream is being encoded.
Headers are protected using maximum redundancy and less
important data is protected using minimal redundancy. Their
work differs from ours in that the channel here is different—
storage vs. communication), as well as the granularity, which
is a lot finer in our case and takes frame and macroblock
dependences into account. To the best of our knowledge, this
is the first work that applies unequal error correction to video

storage. Our methodology could be also applied to video
streaming as well, where different bits can be transferred
through network channels of different reliability, as well as
approximate video processing, where less important video
bits may need less precise computing.

Efforts to support approximate storage or memory in
DRAM have focused on reducing the frequency of DRAM
refresh operations to save energy at the expense of er-
rors [8, 9]. Ranjan et al. leveraged several mechanisms
in STT-MRAM cells that achieve disproportionate energy
improvements (40%) at the cost of rare errors and pro-
posed quality-aware ISA extensions for load/store opera-
tions. These proposals could benefit from adequate pro-
gramming language support for approximate data types [16].
However, they would still require the programmer to man-
ually specify the reliability requirements of their data. Our
work seeks to automatically determine the bit-level reliabil-
ity requirements for a particuar data type and would be a
great fit for such systems.

10. Conclusion
Videos remain the most voluminous data type today despite
the effectiveness of video compression. While storing mul-
tiple bits per cell can significantly increase the storage den-
sity, it exposes high error rates that quickly grow with the
achieved gains, producing unacceptable noise levels for en-
coded videos. In this work we proposed a novel and efficient
methodology that computes bit-level reliability requirements
for encoded videos by tracking visual and metadata depen-
dencies within the encoded bit stream, and show how relia-
bility of video storage can be traded for density in an optimal
way. By optimally balancing the total noise, which includes
both the compression-related deterministic noise and the
approximation-related non-deterministic noise, against the
overall density benefits provided by both, we achieved qual-
ity/density points that neither compression nor approxima-
tion could achieve alone. When applied to a dense but error-
prone PCM substrate with eight information levels per cell,
the proposed methodology reduces the error correction over-
head by half in the worst case—i.e., under the most error-
intolerant encoder settings. Furthermore, we have shown that
the state-of-the art encryption schemes can be applied to the
approximate storage in a way that compromises neither pri-
vacy nor quality of encoded videos.
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