
Probability Type Inference

for Flexible Approximate Programming

Brett Boston Adrian Sampson Dan Grossman Luis Ceze

University of Washington

{bboston7,asampson,djg,luisceze}@cs.washington.edu

Abstract

In approximate computing, programs gain efficiency by al-

lowing occasional errors. Controlling the probabilistic ef-

fects of this approximation remains a key challenge. We

propose a new approach where programmers use a type

system to communicate high-level constraints on the de-

gree of approximation. A combination of type inference,

code specialization, and optional dynamic tracking makes

the system expressive and convenient. The core type sys-

tem captures the probability that each operation exhibits an

error and bounds the probability that each expression devi-

ates from its correct value. Solver-aided type inference lets

the programmer specify the correctness probability on only

some variables—program outputs, for example—and auto-

matically fills in other types to meet these specifications.

An optional dynamic type helps cope with complex run-time

behavior where static approaches are insufficient. Together,

these features interact to yield a high degree of programmer

control while offering a strong soundness guarantee.

We use existing approximate-computing benchmarks to

show how our language, DECAF, maintains a low annota-

tion burden. Our constraint-based approach can encode hard-

ware details, such as finite degrees of reliability, so we also

use DECAF to examine implications for approximate hard-

ware design. We find that multi-level architectures can offer

advantages over simpler two-level machines and that solver-

aided optimization improves efficiency.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features—Data types

and structures

Keywords approximate computing, type inference

1. Introduction

Approximate computing seeks to exploit the accuracy–

efficiency trade-offs latent in computer systems. Applica-

tions exploit unreliable hardware to save time and energy

over traditional, fully reliable execution. But while program-

mers may know which outputs can withstand occasional

errors, it is tedious and error-prone to compose individual

approximate operations to achieve the desired result. Fine-

grained reliability choices can have subtle and far-reaching

implications for the efficiency and reliability of a whole

computation. Programmers need a way to easily maximize

the efficiency of fine-grained operations while controlling

the impact of unreliability on overall accuracy properties.

Previous languages for approximate computing have

demonstrated that programmers can apply efficient-but-

unreliable hardware components using a high-level lan-

guage [2, 3] and that a type system can ensure that ap-

proximation never corrupts essential program state [21]. But

safety properties, such as freedom from pointer corruption,

are only part of approximate computing’s programmability

challenge: more nuanced quality properties dictate how ac-

curate an output must be or how likely a value is to deviate

from its reliable equivalent [2, 23].

We propose DECAF (DECAF, an Energy-aware Compiler

to make Approximation Flexible), a type-based approach to

controlling quality in approximate programs. DECAF’s goal

is to let programmers specify important quality constraints

while leaving the details to the compiler. Its design explores

five critical research questions in approximate programming:

How can programmers effectively use complex hard-

ware with many available degrees of approximation?

Current languages for approximate programming assume

that approximation will be an all-or-nothing affair [2, 16,

21]. But recent work has suggested that more sophisticated

architectures, supporting multiple levels of reliability, are a

better match for application demands [26]. DECAF is a lan-

guage abstraction that shields the programmer from reason-

ing about individual operators to compose reliable software.

Its probability type system constrains the likelihood that any

expression in the relaxed program differs from its equivalent

in a reliable execution.



How can automated tuning interact with programmer

control? Compiler assistance can help reduce the annotation

burden of approximate programming [10, 16, 20]. But fully

automated approaches impede programmers from bringing

intuition to bear when fine-grained control is more appro-

priate. DECAF’s solver-aided type inference adds flexibil-

ity: programmers add accuracy requirements where they are

most crucial and omit them where they can be implied. Pro-

grammers in early development phases can opt to rely more

heavily on inference, while later-stage optimization work

can exert total control over any type in the program.

When static reasoning is insufficient, how can a pro-

gram safely opt into to dynamic tracking? Purely static

systems for reasoning about approximation can be overly

conservative when control flow is dynamic [2] while dy-

namic monitoring incurs run-time overhead [18]. DECAF’s

optional dynamic typing interoperates with its static system

to limit overheads to code where static constraints are insuf-

ficient. We prove a soundness theorem that shows that DE-

CAF’s hybrid system of static types, dynamic tracking, and

run-time checks conservatively bounds the chance of errors.

How should compilers re-use approximate code in

contexts with different accuracy demands? An approxi-

mate program can invoke a single function in some contexts

that permit more approximation and others with stricter reli-

ability requirements. A fixed degree of “aggressiveness” for

a function’s approximation can therefore be conservative.

DECAF’s type inference can automatically synthesize spe-

cialized versions of approximate functions at multiple levels

of reliability.

What do language-level constraints imply for the de-

sign of approximate hardware? Approximate hardware

designs remain in the research stage. As designs mature,

architectures will need to choose approximation parame-

ters that fit a wide range of approximate software. We use

DECAF’s architecture-aware tuning to examine the impli-

cations of programs’ language-level constraints on approxi-

mate hardware. Our evaluation finds that using a solver to

optimize for a hardware configuration can lead to signif-

icant efficiency gains over a hardware-oblivious approach

to assigning probabilities. We also demonstrate that multi-

level architectures can better exploit the efficiency potential

in approximate programs than simpler two-level machines,

and we suggest a specific range of probability levels that a

general-purpose approximate ISA should support.

DECAF consists of a static type system that encodes an

expression’s probability of correctness, a type inference and

code specialization mechanism based on an SMT solver, and

an optional dynamic type. We begin with an overview of

DECAF and its goals before detailing each component in

turn. At the end of the paper, we formalize a core language

to prove its soundness, and we report on our implementation

and empirical findings.

2. Language Overview

The goal of DECAF is to enforce quality constraints on pro-

grams that execute on approximate hardware. Some propos-

als for approximate hardware, and our focus in this work,

provide “relaxed” operations that have a high probability of

yielding a correct output but a nonzero chance of produc-

ing arbitrarily wrong data [9]. Architectures that allow even

a very small probability of error can conserve a large frac-

tion of operation energy [13, 27]. Recently, Venkataramani

et al. [26] suggested that hardware with multiple reliabil-

ity levels—i.e., multiple probabilities of correctness—could

provide better efficiency by adapting to the specific demands

of approximate software. However, these fine-grained prob-

abilistic operations compose in subtle ways to impact the

correctness of coarser-grained outputs.

Consider, for example, a Euclidean distance computation

from a clustering algorithm:

float distance(float[] v1, float[] v2) {
float total = 0.0;
for (int i = 0; i < v1.length; ++i) {
float d = v1[i] − v2[i];
total += d ∗ d;

}
return sqrt(total);

}

This distance function has been shown to be resilient to ap-

proximation in clustering algorithms [8]. To manually ap-

proximate the function, a programmer would need to select

the reliability of each arithmetic operator and determine the

overall reliability of the output.

In DECAF, the programmer can instead specify only the

reliability of the output—here, the return value. For other

values, where the “right” reliability levels are less obvious,

the programmer can leave the probability inferred. The pro-

grammer decides only which variables may tolerate some de-

gree of approximation and which must remain fully reliable.

The programmer may write, for example, @Approx(0.9) float

for the return type to specify that the computed value should

have at least a 90% probability of being correct. The in-

termediate value d can be given the unparameterized type

@Approx float to have its reliability inferred, and the loop in-

duction variable i can be left reliable to avoid compromising

control flow. The programmer never needs to annotate the

operators −, ∗, and +; these reliabilities are inferred. More

simply, the programmer places annotations where she can

make sense of them and relies on inference where she can-

not. Sections 3 and 4 describe the type system and inference.

DECAF also adapts reused code for different reliability

levels. The sqrt function in the code above, for example,

may be used in several contexts with varying reliability de-

mands. To adapt the sqrt function to the reliability contexts

in distance and other code, DECAF’s type inference creates

a limited number of clones of sqrt based on the (possibly

inferred) types of the function’s arguments and result. The

operations in each clone are specialized to provide the opti-



s ::= T v := e | v := e | s ; s | if e s s |while e s | skip

e ::= c | v | e⊕p e | endorse(p, e) | check(p, e) | track(p, e)

⊕ ::= + | − | × | ÷

T ::= q τ

q ::= @Approx(p) | @Dyn

τ ::= int | float

v ∈ variables, c ∈ constants, p ∈ [0.0, 1.0]

(a) Core language.

e ::= · · · | e⊕ e | check(e)

q ::= · · · | @Approx

(b) With type inference.

Figure 1: Syntax of the DECAF language. The inferred

forms (b) allow omission of the explicit probabilities in the

core language (a).

mal efficiency for its quality demands. Section 4.1 describes

how DECAF specializes functions.

Finally, DECAF provides optional dynamic tracking to

cope with code that is difficult or impossible to analyze stat-

ically. In our Euclidean-distance example, the for loop has a

data-dependent trip count, so a sound static analysis would

need to conservatively assume it executes an unbounded

number of times. Multiplying an operator’s accuracy proba-

bility approaches zero in the limit, so any conservative es-

timate, as in Rely [2], must assign the total variable the

probability 0.0—no guarantees. DECAF’s @Dyn type qual-

ifier adds dynamic analysis for these situations. By giving

the type @Dyn float to total, the programmer requests limited

dynamic reliability tracking—the compiler adds code to the

loop to compute an upper bound on the reliability loss at run

time. The programmer then requests a dynamic check, and

a transition back to static tracking, with an explicit check()

cast that throws an exception if the run-time probability falls

below an inferred static threshold. Section 5 describes DE-

CAF’s dynamic type and run-time checks.

By combining all of these features, one possible approxi-

mate implementation of distance in DECAF reads:

@Approx(0.9) float distance(float[] v1, float[] v2) {
@Dyn float total = 0.0;
for (int i = 0; i < v1.length; ++i) {
@Approx float d = v1[i] − v2[i];
total += d ∗ d;

}
return sqrt(check(total));

}

3. Probability Type System

The core concept in DECAF is an expression’s probability of

correctness: the goal is to specify and control the likelihood

that, in any given execution, a value equals the correspond-

ing value in an error-free execution. This section describes

DECAF’s basic type system, in which each type and oper-

ation is explicitly qualified to encode its correctness proba-

bility. Later sections add inference, functions and function

cloning, and optional dynamic tracking.

Figure 1 depicts the syntax for a simplified version of DE-

CAF. A type qualifier q indicates the probability that an ex-

pression is correct: for example, the type @Approx(0.9) int

denotes an integer that is correct in least 90% of executions.

The basic language also provides approximate operators, de-

noted ⊕p where p is the chance that the operation produces a

correct answer given correct inputs. (We assume that any op-

erator given an incorrect input produces an incorrect output,

although this assumption can be conservative—for example,

when multiplying an incorrect value by zero.)

The language generalizes EnerJ [21], where types are ei-

ther completely precise or completely approximate (provid-

ing no guarantees). In DECAF, there is no distinct “pre-

cise” qualifier—instead, the @Precise annotation is syntac-

tic sugar for @Approx(1.0). EnerJ’s @Approx is equivalent to

DECAF’s @Approx(0.0). In our implementation, as in EnerJ,

the precise qualifier—@Approx(1.0)—is the default, so pro-

grammers can incrementally annotate reliable code to safely

enable approximation.

Information flow and subtyping. For soundness, DE-

CAF’s type system permits data flow from high probabilities

to lower probabilities but prevents low-to-high flow:

@Approx(0.9) int x = ...;
@Approx(0.8) int y = ...;
y = x; // sound
x = y; // error

Specifically, we define a subtyping rule so that a type is a

subtype of other types with lower probability:

p ≥ p′

@Approx(p) τ ≺ @Approx(p′) τ

We control implicit flows by enforcing that only fully reli-

able types, of the form @Approx(1.0) τ , may appear in con-

ditions in if and while statements. (Appendix A gives the full

type type system.)

Endorsement expressions provide an unsound escape

hatch from DECAF’s information flow rules. If an expres-

sion e has a type q τ , then endorse(0.8, e) has the type

@Approx(0.8) τ regardless of the original qualifier q.

Approximate operations. DECAF’s operators reflect ap-

proximate hardware operations with probabilistic reliabil-

ity. Specifically, we model hardware where an approximate

arithmetic operation produces a perfectly accurate output



most of the time but, with a small but non-negligible proba-

bility, can produce arbitrarily wrong output instead. We also

assume that these failure events are statistically independent:

an error in one operation does not imply anything about

the chance of error in another. While this chance-of-failure

model does not capture situations where the magnitude of

error is relevant, it reflects a broad class of current hardware

proposals where the probabilty of error is the important pa-

rameter: for example, DRAM refresh relaxation [15], prob-

abilistic resistive memories [22], and arithmetic instructions

in the Truffle [9] and QUORA [26] architectures.

To implement this model, DECAF provides primitive

arithmetic operations parameterized by a correctness prob-

ability. For example, the expression x +0.9 y produces the

sum of x and y at least 90% of the time but may return

garbage otherwise. The annotation on an operator in DE-

CAF is a lower bound on the correctness probability for the

instruction that implements it. For example, if the hardware

provides an approximate add instruction with a correctness

probability of 0.99, then it suffices to implement +0.9 in DE-

CAF. Similarly, a reliable add instruction suffices to imple-

ment an approximate addition operator with any probability

(although it saves no energy).

The correctness probability for an operation x +0.9 y is

at least the product of the probabilities that x is correct, y

is correct, and the addition behaves correctly (i.e., 0.9). To

see this, let Pr[e] denote the probability that the expression

e is correct and Pr[⊕p] be the probability that an operator

behaves correctly. Then the joint probability for a binary

operation’s correctness is:

Pr[x ⊕p y] = Pr[x, y,⊕p]

= Pr[x] · Pr[y | x] · Pr[⊕p | x, y]

The operator’s correctness is independent of its inputs, so

Pr[⊕p | x, y] is p. Additionally, operator correctness is in-

dependent of all other operators in the program. Therefore,

for any operators ⊕p1
,⊕p2

,Pr[⊕p1
| ⊕p2

] = p1. The con-

ditional probability Pr[y | x] is at least Pr[y]. This bound is

tight when the operands are independent but conservative

when they share some provenance, as in x + x. So we can

bound the overall probability:

Pr[x ⊕p y] ≥ Pr[x] · Pr[y] · p

DECAF’s formal type system captures this reasoning in its

rule defining the result type qualifier for operators:

Γ ⊢ e1 : @Approx(p1) τ1 Γ ⊢ e2 : @Approx(p2) τ2
τ3 = optype(τ1, τ2) p′ = p1 · p2 · pop

Γ ⊢ e1 ⊕pop
e2 : @Approx(p′) τ3

where optype defines the unqualified types. Appendix A lists

the full set of rules.

This basic type system soundly constrains the correctness

probability for every expression. The next two sections de-

scribe extensions that improve its expressiveness.

4. Inferring Probability Types

We introduce type inference to address the verbosity of the

basic system. Without inference, DECAF requires a relia-

bility level annotation on every variable and every operation

in the program. We want to allow the programmer to add

reliability annotations only at outputs where requirements

are intuitive. In the Euclidean distance example above, we

want to uphold a 90% correctness guarantee on the returned

value without requiring explicit probabilities on each +, ∗,

and float. If a programmer wants to experiment with differ-

ent overall output reliabilities for the distance function, she

should not need to manually adjust the individual operators

and the sqrt call to meet a new requirement. Instead, the pro-

grammer should only express important output correctness

requirements while letting the compiler infer the details.

We extend DECAF to make probability annotations op-

tional on both types and operations. The wildcard type qual-

ifier is written @Approx without a parameter. Similarly, ⊕
without a probability denotes an inferred operator.

DECAF uses a constraint-based type inference approach

to determine operation reliabilities and unspecified types.

While constraint-based type inference is nothing new, our

type system poses a distinct challenge in that its types are

continuous. We use an SMT solver to find real-valued type

assignments given constraints in the form of inequalities.

As an example, consider a program with three unknown

reliabilities: two variables and one operator.

@Approx int a, b; ...;
@Approx(0.8) int c = a + b;

The program generates a trivial equality constraint for the

annotated variable c, a subtyping inequality for the assign-

ment, and a product constraint for the binary operator:

pc = 0.8 pc ≤ pexpr pexpr = pa · pb · pop

Here, pop denotes the reliability of the addition itself and

pexpr is the reliability of the expression a + b. Solving the

system yields a valuation for pop, the operator’s reliability.

DECAF’s constraint systems are typically undercon-

strained. In our example, the valuation pa = pb = 1,

pop = 0.8 satisfies the system, but other valuations are also

possible. We want to find a solution that maximizes energy

savings. Energy consumption is a dynamic property, but we

can optimize a proxy: specifically, we minimize the total re-

liability over all operations in the program while respecting

the explicitly annotated types. We encode this proxy as an

objective function and emit it along with the constraints. We

leave other approaches to formulating objective functions,

such as profiling or static heuristics, to future work.

DECAF generates the constraints for a program and in-

vokes the Z3 SMT solver [6] to solve them and to minimize

the objective function. The compiled binary, including reli-

ability values for each operator, may be run on a hardware

simulator to observe energy usage.



4.1 Function Specialization

DECAF’s inference system is interprocedural: parameters

and return values can have inferred approximate types. In

the Euclidean distance code above, for example, the square

root function can be declared with wildcard types:

@Approx float sqrt(@Approx float arg) { ... }

A straightforward approach would infer a single type for

sqrt compatible with all of its call sites. But this can be

wasteful: if sqrt is invoked both from highly reliable code

and from code with looser requirements, a “one-size-fits-all”

type assignment for sqrt will be unnecessarily conservative

for the more approximate context. Conversely, specializing a

version of sqrt for every call site could lead to an exponential

explosion in code size.

Instead, we use constraint solving to specialize functions

a constant number of times according to calling contexts.

The approach resembles traditional procedure cloning [4]

but exploits DECAF’s SMT formulation to automatically

identify the best set of specializations. The programmer en-

ables specialization by giving at least one parameter type or

the return type of a function the inferred @Approx qualifier.

Each call site to a specializable function can then bind to one

of the versions of the callee. The DECAF compiler generates

constraints to convey that every call must invoke exactly one

specialized version.

For example, in this context for a call to sqrt:

@Approx(0.9) float a = ...;
@Approx(0.8) float r = sqrt(a);

The compiler generates constraints resembling:

pa = 0.9 pr = 0.8 pr ≤ pcall

(pcall ≤ pret1 ∧ parg1 ≤ pa) ∨ (pcall ≤ pret2 ∧ parg2 ≤ pa)

Here, pret1 and pret2 denote the reliability of sqrt’s return

value in each of two versions of the function while parg1 and

parg2 denote the argument. This disjunction constrains the

invocation to be compatible with at least one of the versions.

The compiler also generates constraint variables—not

shown above—that contain the index of the version “se-

lected” for each call site. When inferring types for sqrt itself,

the compiler generates copies of the constraints for the body

of the function corresponding to each potential specialized

version. Each constraint system binds to a different set of

variables for the arguments and return value.

DECAF’s optimization procedure produces specializa-

tion sets that minimize the overall objective function. The

compiler generates code for each function version and ad-

justs each call to invoke the selected version.

Like unbounded function inlining, unbounded specializa-

tion can lead to a combinatorial explosion in code size. To

avoid this, DECAF constrains each function to at most k
versions, a compile-time parameter. It also ensures that all

specialized function versions are live—bound to at least one

call site—to prevent the solver from “optimizing” the pro-

gram by producing dead function variants and reducing their

operator probabilities to zero.

The compiler also detects recursive calls that lead to

cyclic dependencies and emits an error. Recursion requires

that parameter and return types be specified explicitly.

5. Optional Dynamic Tracking

A static approach to constraining reliability avoids run-time

surprises but becomes an obstacle when control flow is un-

bounded. Case-by-case solutions for specific forms of con-

trol flow could address some limitations of static tracking

but cannot address all dynamic behavior. Instead, we opt for

a general dynamic mechanism.

Inspired by languages with gradual and optional typ-

ing [25], we provide optional run-time reliability tracking

via a dynamic type. The data-dependent loop in Section 2’s

Euclidean distance function is one example where dynamic

tracking fits. Another important pattern where static ap-

proaches fall short is convergent algorithms, such as sim-

ulated annealing, that iteratively refine a result:

@Approx float result = ...;
while (fitness(result) > epsilon)
result = refine(result);

In this example, the result variable flows into itself. A con-

servative static approach, such as our type inference, would

need to infer the type @Approx(0.0) float for result. Fun-

damentally, since the loop’s trip count is data-dependent,

purely static solutions are unlikely to determine an appro-

priate reliability level for result. Previous work has acknowl-

edged this limitation by abandoning guarantees for any code

involved in dynamically bounded loops [2].

To cope with these situations, we add optional dynamic

typing via a @Dyn type qualifier. The compiler augments

operations involving @Dyn-qualified types with bookkeep-

ing code to compute the probability parameter for each re-

sult. Every dynamically tracked value has an associated dy-

namic correctness probability field that is managed transpar-

ently by the compiler. This dynamic tracking follows the typ-

ing rules analogous to those for static checking. For exam-

ple, an expression x +0.9 y where both operands have type

@Dyn float produces a new @Dyn float; at run time, the book-

keeping code computes the dynamic correctness as the prod-

uct of x’s dynamic probability value, y’s probability, and the

operator’s probability, 0.9.

Every dynamic type @Dyn τ is a supertype of its static

counterparts @Approx τ and @Approx(p) τ . When a statically

typed value flows into a dynamic variable, as in:

@Approx(0.9) x = ...;
@Dyn y = x;

The compiler initializes the run-time probability field for the

variable y with x’s static reliability, 0.9.

Flows in the opposite direction—from dynamic to static—

require an explicit dynamic cast called a checked endorse-



ment. For an expression e of type @Dyn τ , the program-

mer writes check(p, e) to generate code that checks that the

value’s dynamic probability is at least p and produce a static

type @Approx(p) τ . If the check succeeds, the static type

is sound. If it fails, the checked endorsement raises an ex-

ception. The program can handle these exceptions to take

corrective action or fall back to reliable re-execution.

This dynamic tracking strategy ensures that run-time

quality exceptions are predictable. In a program without

(unchecked) endorsements, exceptions are raised determin-

istically: the program either always raises an exception or

never raises one for a given input. This is because control

flow is fully reliable and the dynamic probability tracking

depends only on statically-determined operator probabili-

ties, not the dynamic outcomes of approximate operations.

In our experience, @Dyn is only necessary when an ap-

proximate variable forms a loop-carried dependency. Sec-

tion 8 gives more details on the placement and overhead of

the @Dyn qualifier.

Interaction with inference. Like explicitly parameterized

types, inferred static types can interact bidirectionally with

the @Dyn-qualified types. When a value with an inferred type

flows into a dynamic type, as in:

@Approx x = ...;
@Dyn y = x;

The assignment into y generates no constraints on the type of

x; any inferred type can transition to dynamic tracking. (The

compiler emits a warning when no other code constrains x, a

situation that can also arise in the presence of endorsements.

See the next section.)

Inference can also apply when transitioning from dy-

namic to static tracking with a checked endorsement. DE-

CAF provides a check(e) variant that omits the explicit prob-

ability threshold and infers it. This inferred parameter is use-

ful when other constraints apply, as in the last line of the

Euclidean distance example above:

return sqrt(check(total));

The result of the sqrt call needs to meet the programmer’s

@Approx(0.9) float constraint on the return type, but the cor-

rectness probability required on total to satisfy this demand

is not obvious—it depends on the implementation of sqrt.

The compiler can infer the right check threshold, freeing the

programmer from manual tuning.

Operators with @Dyn-typed operations cannot be inferred.

Instead, operations on dynamic values are reliable by de-

fault; the programmer can explicitly annotate intermediate

operations to get approximate operators.

6. Using the Language

This section details two practical considerations in DECAF

beyond the core mechanisms of inference, specialization,

and dynamic tracking.

Constraint warnings. In any type inference system, pro-

grammers can encounter unintended consequences when

constraints interact in unexpected ways. To guard against

two common categories of mistakes, the DECAF compiler

emits warnings when a program’s constraint system ether

allows a probability variable to be 0.0 or forces a probability

to 1.0. Each situation warrants developer attention.

An inferred probability of 0.0 indicates that a variable is

unconstrained—no chain of dependencies connects the value

to an explicit annotation. Unconstrained types can indicate

dead code, but they can also signal legitimate uses that re-

quire additional annotation. If an inferred variable flows only

into endorsements and @Dyn variables, and never into ex-

plicitly annotated types, it will have no constraints. Without

additional annotation, the compiler will use the most aggres-

sive approximation level available. The programmer can add

explicit probabilities to constrain these cases.

Conversely, an inferred probability of 1.0—i.e., no ap-

proximation at all—can indicate a variable that flows into

itself, as in the iterative refinement example in the previous

section or the total accumulation variable in the earlier Eu-

clidean distance example. This self-flow pattern also arises

when updating a variable as in x = x + 1 where x is an in-

ferred @Approx int. In these latter situations, a simple so-

lution is to introduce a new variable for the updated value

(approximating a static single assignment transformation).

More complex situations require a @Dyn type.

Hardware profiles. While DECAF’s types and inference

are formulated using a continuous range of probabilities,

realistic approximate hardware is likely to support only a

small number of discrete reliability levels [9, 26]. The opti-

mal number of levels remains an open question, so different

machines will likely provide different sets of operation prob-

abilities. A straightforward and portable approach to exploit-

ing this hardware is to round each operation’s probability up

to the nearest hardware-provided level at deployment time.

When there is no sufficiently accurate approximation level,

a reliable operation can be soundly substituted.

We also implement and evaluate an alternative approach

that exploits the hardware profile of the intended deployment

platform at compile time. The compiler can use such an a

priori hardware specification to constrain each variable to

one of the available levels. The SMT solver can potentially

find a better valuation of operator probabilities than with

post-hoc rounding. (This advantage is analogous to integer

linear programming, where linear programming relaxation

followed by rounding typically yields a suboptimal but more

efficient solution.) In our evaluation, we study the effects of

finite-level hardware with respect to a continuous ideal and

measure the advantage of a priori hardware profiles.

7. Formalism

A key feature in DECAF is its conservative quality guar-

antee. In the absence of unchecked endorsements, a DECAF



program’s probability types are sound: an expression’s static

type gives a lower bound on the actual run-time probabil-

ity that its value is correct. The soundness guarantee applies

even to programs that combine static and dynamic tracking.

To make this guarantee concrete, we formalize a core of DE-

CAF and prove its soundness.

The formal language represents a version of DECAF

where all types have been inferred. Namely, the core lan-

guage consists of the syntax in Figure 1a. It excludes the

inferred expressions and types in Figure 1b but includes ap-

proximate operators, dynamic tracking, and endorsements.

(While we define the semantics for both kinds of endorse-

ments for completeness, we will prove a property for pro-

grams having only checked endorsements. Unchecked en-

dorsements are an unsound escape hatch.)

The core language also includes one expression that is

unnecessary in the programmer-facing version of DECAF:

track(p, e). This expression is a cast from any static type

@Approx(p′)τ to its dynamically-tracked equivalent, @Dynτ .

At run time, it initializes the dynamic probability field for the

expression. In the full language, the compiler can insert this

coercion transparently, as with implicit int-to-float coercion

in Java or C.

This section gives an overview of the formalism’s type

system, operational semantics, and main soundness theorem.

Appendix A gives the full details and proofs.

Types. There are two judgments in DECAF’s type system:

one for expressions, Γ ⊢ e : T , and another for statements,

Γ ⊢ s : Γ′, which builds up the static context Γ′.

One important rule gives the static type for operators,

which multiplies the probabilities for both operands with the

operator’s probability:

Γ ⊢ e1 : @Approx(p1) τ1 Γ ⊢ e2 : @Approx(p2) τ2
τ3 = optype(τ1, τ2) p′ = p1 · p2 · pop

Γ ⊢ e1 ⊕pop
e2 : @Approx(p′) τ3

Here, optype is a helper judgment defining operators’ un-

qualified types.

Operational semantics. We present DECAF’s run-time

behavior using operational semantics: small-step for state-

ments and large-step for expression evaluation. Both sets of

semantics are nondeterministic: the operators in DECAF can

produce either a correct result number, c, or a special error

value, denoted �.

To track the probability that a value is correct (that is,

not �), the judgments maintain a probability map S for all

defined variables. There is a second probability map, D, that

reflects the compiler-maintained dynamic probability fields

for @Dyn-typed variables. Unlike D, the bookkeeping map

S is an artifact for defining our soundness criterion—it does

not appear anywhere in our implementation.

The expression judgment H;D;S; e ⇓p V indicates that

the expression e evaluates to the value V and is correct with

probability p. We also use a second judgment, H;D;S; e ⇓p

V, pd, to denote dynamically-tracked expression evaluation,

where pd is the computed shadow probability field. As an

example, the rules for variable lookup retrieve the “true”

probability from the S map and the dynamically-tracked

probability field from D:

VAR

v 6∈ D

H;D;S; v ⇓S(v) H(v)

VAR-DYN

v ∈ D

H;D;S; v ⇓S(v) H(v), D(v)

The statement step judgment is H;D;S; s −→ H ′;D′;S′; s′.
The rule for mutation is representative:

H;D;S; e ⇓p V

H;D;S; v := e −→ H, v 7→ V ;D;S, v 7→ p; skip

It updates both the heap H and the bookkeeping map S. A

similar rule uses the dynamically-tracked expression judg-

ment and also updates D.

Soundness. To express our soundness property, we define

a well-formedness criterion that states that a dynamic proba-

bility field map D and a static context Γ together form lower

bounds on the “true” probabilities in S. We write this prop-

erty as ⊢ D,S : Γ.

Definition 1 (Well-Formed). ⊢ D,S : Γ iff for all v ∈ Γ,

• If Γ(v) = @Approx(p) τ , then p ≤ S(v) or v /∈ S.

• If Γ(v) = @Dyn τ , then D(v) ≤ S(v) or v /∈ S.

The language’s soundness theorem states that D and S re-

main well-formed through the small-step statement evalua-

tion semantics.

Theorem 1 (Soundness). For all programs s with no endorse

expressions, for all n ∈ N where ·; ·; ·; s −→n H;D;S; s′,
if · ⊢ s : Γ, then ⊢ D,S : Γ.

See Appendix A for the full proof of the theorem. The

appendix also states an erasure theorem to show that S
does not affect the actual operation of the program: its only

purpose is to define soundness for the language.

8. Evaluation

We implemented DECAF and evaluated it using a variety

of approximation-tolerant applications. The goals of this

evaluation were twofold: to gain experience with DECAF’s

language features; and to apply it as a testbed to examine the

implications of software constraints for hardware research.

8.1 Implementation

We implemented a type checker, inference system, and run-

time for DECAF as an extension to Java. The implemen-

tation extends the simpler EnerJ type system [21] and is

similarly based on Java 8’s extensible type annotations [7].

The compiler uses AST instrumentation and a runtime li-

brary to implement dynamic tracking for the @Dyn quali-

fier. For Java arrays, the implementation uses conservative

object-granularity type checking and dynamic tracking.



Application Description Build Time LOC @Approx @Approx(p) @Dyn Approx Dyn

fft Fourier transform 2 sec 747 37 11 23 7% 55%

imagefill Bar code recognition 14 min 344 76 20 0 45% <1%

lu LU decomposition 1 min 775 63 9 12 24% <1%

mc Monte Carlo approximation 2 min 562 67 8 6 21% <1%

raytracer 3D image reading 1 min 511 38 4 2 12% 44%

smm Sparse matrix multiply 1 min 601 37 4 4 28% 28%

sor Successive over-relaxation 19 min 589 43 3 3 63% <1%

zxing Bar code recognition 16 min 13180 220 98 4 31% <1%

Table 1: Benchmarks used in the evaluation. The middle set of columns show the static density of DECAF annotations in the

Java source code. The final two columns show the dynamic proportion of operations in the program that were approximate (as

opposed to implicitly reliable) and dynamically tracked (both approximate and reliable operations can be dynamically tracked).

The compiler generates constraints for the Z3 SMT

solver [6] to check satisfiability, emit warnings, and tune

inferred operator probabilities. The constraint systems ex-

ercise Z3’s complete solver for nonlinear real arithmetic.

To stay within the reach of this complete solver, we avoided

generating any integer-valued constraints, which can quickly

cause Z3’s heuristics to reject the query.

Z3 does not directly support optimization problems, so

we use a straightforward search strategy to minimize the ob-

jective function. The linear search executes queries repeat-

edly while reducing the bound on the objective until the

solver reports unsatisfiability or times out (after 1 minute

in our experiments). The optimization strategy’s dependence

on real-time behavior means that the optimal solutions are

somewhat nondeterministic. Also, more complex constraint

systems can time out earlier and lead to poorer optimization

results—meaning that adding constraints meant to improve

the solution can paradoxically worsen it. In practice, we ob-

serve this adverse effect for two benchmarks where hardware

constraints cause an explosion in solver time (see below).

We optimize programs according to a static proxy for a

program’s overall efficiency (see Section 4). Our evaluation

tests this objective’s effectiveness as a static proxy for dy-

namic behavior by measuring dynamic executions.

8.2 Experimental Setup

We consider an approximate processor architecture where

arithmetic operations may have a probability of failure, mir-

roring recent work in hardware design [9, 13, 26, 27]. Be-

cause architecture research on approximate computing is at

an early stage, we do not model a specific CPU design:

there is no consensus in the literature on which reliabil-

ity parameters are best or how error probabilities translate

into energy savings. Instead, we design our evaluation to ad-

vance the discussion by exploring the constraints imposed by

language-level quality demands. We explore error levels in

a range commensurate with current proposals—correctness

probabilities 99% and higher—to inform the specific param-

eters that hardware should support. Researchers can use this

platform-agnostic data to evaluate architecture designs.

We implemented a simulation infrastructure that emulates

such a machine with tunable instruction reliability. The sim-

ulator is based on the freely available implementation used

by Sampson et al. [21], which uses a source-to-source trans-

lation of Java code to invoke a run-time library that injects

errors and collects execution statistics. To facilitate simula-

tion, three pieces of data are exported at compile time and

imported when the runtime is launched. Every operator used

in an approximate expression is exported with its reliability.

When an operator is encountered, the simulator looks up its

reliability or assumes reliable execution if the operator is not

defined. To facilitate @Dyn expression tracking, the compiler

exports each variable’s reliability and the runtime imports

this data to initialize dynamic reliability fields. Finally, the

run-time uses a mapping from invocations to function vari-

ants to look up the reliabilities specialized functions.

Performance statistics were collected on a 4-core, 2.9 GHz

Intel Xeon machine with 2-way SMT and 8 GB RAM run-

ning Linux. We used OpenJDK 1.7.0’s HotSpot VM and

version Z3 version 4.3.1.

8.3 Benchmarks and Annotation

We evaluate a set of Java benchmarks from the EnerJ bench-

mark suite [21]. Table 1 lists the applications and statistics

about their source code and annotations.

The benchmarks’ original EnerJ annotations distinguish

approximation-tolerant variables (marked with @Approx)

from reliable variables (the default). To adapt the programs

for DECAF, we left most of these type annotations as the

inferred @Approx annotation. On the output of each bench-

mark and on a few salient boundaries between components,

we placed concrete @Approx(p) restrictions. These outputs

have a variety of types, including single values, arrays of

pixels, and strings. Informed by compiler warnings, we used

@Dyn for variables involved in loop-carried dependencies

where static tracking is insufficient along with check() casts

to transition back to static types. Finally, we parameterized



some @Approx annotations to add constraints where they

were lacking—i.e., when inferred values flow into endorse-

ments or @Dyn variables exclusively.

For each application, we applied the @Approx(0.9) quali-

fier to the overall output of the computation. This and other

explicit probability thresholds dictate the required reliability

for the program’s operations, which we measure in this eval-

uation. We believe these constraints to be representative of

practical deployments, but deployment scenarios with looser

or tighter output quality constraints will lead to correspond-

ingly different operator probability requirements.

When starting from unannotated code, we find that it is

typically possible to follow type errors to find the set of

declarations that need @Approx annotations. Programmers

only need to apply domain knowledge at module boundaries

to pick specific probabilities in an interface. In our bench-

marks, which focus on small computational kernels known

to be approximate, annotations can be dense. We expect

that, in larger applications, approximation will be confined

to performance-critical modules: the majority of a larger ap-

plication’s code will be uninteresting for approximation, so

DECAF’s annotations will be proportionally sparser.

8.4 Results

We use these benchmarks to study the implications of our

benchmarks on the design of approximate hardware. Key

findings (detailed below) include:

• By tuning a application to match a specific hardware pro-

file, a compiler can achieve better efficiency than with

hardware-oblivious optimization. Hardware-targeted op-

timization improves efficiency even on a simple two-level

approximate architecture.

• Most benchmarks can make effective use of multiple op-

erator probabilities. Processors should provide at least

two probability levels for approximate operations to max-

imize efficiency.

• Operator correctness probabilities between 1.0 − 10−2

and 1.0 − 10−8 are most broadly useful. Probabilities

outside this range benefit some benchmarks but are less

general.

These conclusions reflect the characteristics of our bench-

marks and their annotations, which in turn are based on re-

cent work on approximate computing. The raw data is avail-

able for use in studies of approximation systems:

http://sampa.cs.washington.edu/decaf

8.5 Sensitivity to Hardware Reliability Levels

An ideal approximate machine would allow arbitrarily fine-

grained reliability tuning to exactly match the demands of

every operation in any application. Realistically, however,

an architecture will likely need to provide a fixed set of

probability levels. The number of levels will likely be small

to permit efficient instruction encoding. We use DECAF to
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Figure 2: Sensitivity to hardware restrictions for two bench-

marks. The horizontal axes show the probability levels; the

vertical axes reflect the fraction of approximate operations in

an execution assigned to each level. The rounded executions

were assigned to levels after unrestricted solving; the solved

executions used the hardware profile during type inference.

evaluate the impact of this restriction by simulating different

hardware configurations alongside the ideal, continuously

approximable case.

We simulate architectural configurations with two to eight

levels of reliability. A two-level machine has one reliable

operation mode (p = 1.0) and one approximate mode, for

which we choose p = 0.99. This configuration resembles

the Truffle microarchitecture, which provides only one ap-

proximate mode [9]. We evaluate multi-level configurations

that each add a probability level with one more “nine”:

p = 0.999, p = 0.9999, and so on, approaching fully reli-

able operation. Architecture proposals suggest that even low

probabilities of error can yield energy savings [11, 12, 14].

Solving vs. rounding levels. To run a DECAF-compiled

program on realistic approximate hardware, two strategies

are possible for selecting the probability level for each oper-

ation. A simplistic approach rounds the inferred probabilities

up to the nearest level. The compiler can potentially do better

by using the SMT solver to apply hardware constraints dur-

ing type inference if the deployment architecture is known

ahead of time.

Figure 2 compares the two approaches, denoted solving

and rounding, for two of our benchmarks on two-, three-, and

four-level machines. Hardware-constrained solving shifts

the distribution toward lower probabilities in each of the

http://sampa.cs.washington.edu/decaf


three machines. When mc runs on a three-level machine, for

example, the simple rounding strategy rarely uses the lowest

p = 0.99 reliability level; if we instead inform the solver

that this level is available, the benchmark can use it for a

third of its approximate operations. A similar effect arises

for raytracer, for which the solver assigns the lowest reli-

ability level to about half of the operations executed while

rounding makes the majority of operations fully reliable.

These differences suggest that optimizing an approximate

program for a specific hardware configuration can enable

significant energy savings, even for simple approximate ma-

chines with only two probability levels. DECAF’s solver-

based tuning approach enables this kind of optimization.

While solving for hardware constraints can lead to better

efficiency at run time, it can also be more expensive at com-

pile time. The SMT queries for most benchmarks took only

a few minutes, but two outliers—sor and zxing—took much

longer when level constraints were enabled. For sor, solving

succeeded for machine configurations up to four levels but

exceeded a 30-minute timeout for larger level counts; zxing

timed out even in the two-level configuration. In the remain-

der of this evaluation, we use the more sophisticated solving

scheme, except for these cases where solving times out and

we fall back to the cheaper rounding strategy.

Probability granularity. More hardware probability levels

can enable greater efficiency gains by better matching ap-

plications’ probability requirements. Figure 3 depicts the al-

location of programs’ operations to reliability levels for a

range of hardware configurations from 2 to 8 levels. In this

graphic, white and lighter shades indicate more reliable ex-

ecution and correspondingly lower efficiency gains; darker

shades indicate more opportunity for energy savings.

Five of the eight benchmarks use multiple operator prob-

ability levels below 1.0 when optimized for hardware that

offers this flexibility. This suggests that multi-level approx-

imate hardware designs like QUORA [26] can unlock more

efficiency gains in these benchmarks than simpler single-

probability machines like Truffle [9]. The exceptions are

imagefill, lu, and smm, where a single probability level seems

to suffice for the majority of operations.

Most of our benchmarks exhibit diminishing returns af-

ter a certain number of levels. For example, mc increases its

amount of approximation up to four levels but does not bene-

fit from higher level counts. Similarly, imagefill’s benefits do

not increase after six levels. In contrast, raytracer and zxing
see improvements for configurations up to eight levels.

In an extreme case, smm falls back to reliable execution

for nearly all of its operations in every configuration we

simulated except for the eight-level machine. This suggests

that a two-level machine would suffice for this benchmark,

provided the single approximate operation probability were

high enough. On the other hand, specializing a two-level

architecture to this outlier would limit potential efficiency

gains for other applications.
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Figure 4: Approximate operation probabilities on an ideal

continuous machine. Gray boxes show the probability range

accommodated by our simulated discrete-level machines,

white boxes represent higher-reliability operations, and

black boxes are lower-reliability operations. Hatched boxes

indicate approximate operations that are forced to execute

reliably by program constraints, even on ideal hardware.

Increasing reliability levels do not strictly lead to ef-

ficiency benefits in DECAF’s solver-based approach. For

sor, the added constraints for more granular hardware lev-

els lead to a more complex SMT solver query and eventu-

ally timeouts. After four levels, the solver failed to optimize

the benchmark and we fell back to the naı̈ve rounding strat-

egy, which leads to lower efficiency gains. These timeouts

are partially due to DECAF’s straightforward encoding of

program and hardware constraints; future work on optimiz-

ing DECAF’s constraint systems for efficient solving could

make larger level counts more tractable.

Comparison to ideal. An ideal approximate architecture

that features arbitrary probability levels could offer more

flexibility at the extremes of the probability range. To evalu-

ate the importance of higher and lower levels, we simulated

an ideal continuous machine. Figure 4 shows the fraction

of approximate operations in executions of each benchmark

that used probabilities below the range of our realistic ma-

chines (below 99% probability) and above the range (above

p = 1.0 − 10−8). The figure also shows the operations that

executed with probability exactly 1.0 even on this contin-

uous architecture, indicating that they were constrained by

program requirements rather than hardware limitations.

For all but one application, most operations lie in the

range of probabilities offered by our discrete machine sim-

ulations. Only three benchmarks show a significant number

of operations with probabilities below 99%, and one outlier,

imagefill, uses these low-probability operations for nearly
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Figure 3: Operator probability breakdowns. Each bar shows a hardware configuration with a different number of levels. Darker

shades indicate lower probabilities and correspondingly higher potential energy savings. Bars marked ⋆ used the cheaper

rounding strategy instead of solving to determine levels.

all of its approximable computations. The only benchmark

that significantly uses higher-probability operations is zxing,

where about 20% of the operations executed had a proba-

bility greater than 1.0 − 10−8. Among our benchmarks, the

0.99 ≤ p ≤ 0.99999999 probability range suffices to cap-

ture most of the flexibility offered by an ideal machine.

Example energy model. This evaluation measures error

probabilities with the goal of allowing hardware designers

to plug in energy models. (We intend to make the raw data

available in full after publication.) To give a sense of the

potential savings, we apply a simple energy model based

on EnerJ [21]: a correctness probability of 0.99 yields 30%

energy savings over a precise operation, p = 10−4 saves

20%, p = 10−6 saves 10%, and other levels are interpolated.

More optimistic hardware proposals exist (e.g., Venkatara-

mani et al. [26]), but EnerJ’s conservative CPU-based model

serves as a useful point of comparison. On an eight-level ma-

chine, the total operation energy saved is:

Benchmark Rounded Solved

fft <1% <1%

imagefill 7% 22%

lu <1% 9%

mc 5% 23%

raytracer 1% 20%

smm 2% 2%

sor 12% —

zxing 1% —

The table shows the modeled energy reduction for both

the hardware-oblivious rounding strategy and the platform-

specific solving strategy (except where the solver timed out).

The results reflect the above finding that solving yields better

savings than rounding after the fact.

8.6 Interprocedural Inference and Specialization

In all of our benchmarks, we used the inferred @Approx

qualifier on function parameters and return types to let the

compiler propagate constraints interprocedurally. This let us

write simpler annotations that directly encoded our desired

output correctness constraints and avoid artificially align-

ing them with function boundaries. In some benchmarks—

namely, lu and zxing—multiple call sites to these inferred

functions allowed the compiler to specialize variants and im-

prove efficiency.

In lu, for example, specialization was critical to mak-

ing the benchmark take advantage of approximate hardware.

That benchmark uses a utility function that copies approxi-

mate arrays. The factorization routine has three calls to the

copying function, and each of the intermediate arrays in-

volved have varying impact on the output of the benchmark.

When we limit the program to k = 1 function variants—

disabling function specialization—all three of these inter-

mediates are constrained to have identical correctness prob-

ability, and all three must be as reliable as the least tolerant

among them. As a result, the benchmark as a whole exhibits

very little approximate execution: more than 99% of its ap-

proximate operations are executed reliably (p = 1.0). By

allowing k = 2 function specializations, however, the com-

piler reduces the fraction to 8%, and k = 3 specializations

further reduce it to 7%. A similar pattern arises in the zx-
ing benchmark, where utility functions on its central data

structure—a bit-matrix class used to hold black-and-white

pixel values—are invoked from different contexts through-

out the program.



8.7 Dynamic Tracking

The @Dyn type qualifier lets programmers request dynamic

probability tracking, in exchange for run-time overhead,

when DECAF’s static tracking is too conservative. Table 1

shows the number of types we annotated with @Dyn in each

benchmark. Dynamic tracking was necessary at least once

in every benchmark except one (imagefill). Most commonly,

@Dyn applied in loops that accumulate approximate values.

For example, zxing has a loop that searches for image pat-

terns that suggest the presence of parts of a QR code. The

actual detection of each pattern can be statically tracked,

but the loop also accumulates the total size of the image pat-

terns. Since the loop’s trip count depends on the input image,

dynamic tracking was necessary for precision: no nonzero

static bound on the size variable’s probability would suffice.

Table 1 also shows the fraction of operations in an execu-

tion of each benchmark that required dynamic tracking. In

five of our eight benchmarks, less than 1% of the operations

in the program need to be dynamically tracked, suggesting

that energy overhead would be minimal. In the remaining

three benchmarks, a significant portion of the application’s

approximate and reliable operations required dynamic track-

ing. (Recall that operations on @Dyn-typed variables are re-

liable by default but still require propagation of probability

information.) In the worst case, fft uses dynamic tracking for

55% of the operations in its execution.

In a simple implementation, each dynamically tracked

operation expands out to two operations, so the percentage of

dynamically tracked operations is equivalent to the overhead

incurred. An optimizing compiler, however, can likely co-

alesce and strength-reduce the multiplications-by-constants

that make up tracking code. In fft, for example, an inner loop

reads two array elements, updates them each with a series of

four approximate operations, and writes them back. A stan-

dard constant-propagation optimization could coalesce the

four tracking operations to a single update. In other cases,

such as zxing’s pattern-search loop described above, the cor-

rectness probability loss is directly proportional to the loop

trip count. Standard loop optimizations could hoist these up-

dates out of the loop and further reduce overhead.

8.8 Tool Performance

Table 1 lists the running time of the inference system for

each benchmark. The total time includes time spent on the

initial system-satisfiability query, the optimization query se-

ries, parsing and analyzing the Java source code, and check-

ing for DECAF constraint warnings. Most of the time is

spent in optimization, so it can be faster to produce a sat-

isfying but suboptimal type assignment. The optimization

queries have a timeout of one minute, so the final SMT query

in the series can take at most this long; for several bench-

marks, the solver returns unsatisfiable before this timeout is

reached. The compiler typically runs in about 1–20 minutes.

One outlier is fft, whose constraint system is fast to solve

because of the benchmark’s reliance on dynamic tracking.

These measurements are for a continuous configuration

of the system rather than a more expensive level-constrained

version. Solver times for hardware-constrained inference

are comparable, except for the two benchmarks mentioned

above that time out: sor and zxing.

9. Related Work

Programming systems for approximate computing have re-

cently become an area of interest for programming lan-

guages research. This work’s primary distinctions are its fo-

cus on types for annotation flexibility, exploitation of recent

multi-level architectures, and integration of static and dy-

namic tracking.

Some approaches to approximate programming, includ-

ing Relax [5] and EnerJ [21], focus primarily on safety prop-

erties: preventing bugs where approximation contaminates

pointers or causes wild control flow. These proposals have

focused on deciding which parts of a computation may be

subject to error. Our work addresses the related but distinct

issue of quality, which concerns the degree of error allow-

able in a program.

DECAF is most closely related to other systems for in-

ferring operator reliabilities to meet programmer-specified

correctness bounds. Chisel [16] uses an integer linear pro-

gramming formulation to choose which operations in a func-

tion should be made approximate to meet a bound on the

function’s return value. Similarly, ExpAX [10] uses a data-

flow analysis combined with a genetic algorithm to deter-

mine which operations in a program to approximate based

on an overall quality bound for the entire application. DE-

CAF’s type-based approach is new in four important ways:

(1) Where prior work assumes a single level of hardware ap-

proximation, DECAF is the first language we are aware of

that targets approximate architectures with multiple proba-

bilities. We show empirically that multi-level architectures

can offer applications better efficiency for the same output

reliability than simpler single-level approximation. (2) DE-

CAF shows how to augment static guarantees with run-time

monitoring. (3) DECAF can specialize functions according

to quality demands in calling contexts. (4) Probability type

qualifiers admit flexible annotation that scales with program-

mer effort.

Probabilistic assertions [23] express statistical program

properties: for example, output quality requirements in ap-

proximate programs. The verifier supports arbitrary accu-

racy metrics, but it cannot produce conservative bounds or

infer partially-specified approximations. Similarly, Bornholt

et al.’s Uncertain<T> [1] uses a library-based approach to

compose probability distributions at run time, a process that

resembles DECAF’s dynamic probability tracking.

DECAF also relates to systems for optimizing floating-

point precision. Precimonious [19] chooses bitwidths to



meet an output precision bound, while Schkufza et al. [24]

design a superoptimizer that takes an accurate kernel and

synthesizes new implementations that approximate the orig-

inal behavior.

While type inference typically reconstructs types so that

any solution leads to the same program semantics, DECAF’s

inference determines the program’s probabilistic behavior.

Similarly, Chlorophyll uses type inference to assign data and

computations to processing elements to minimize communi-

cation [17]. That work also uses an SMT solver to optimize

an objective function.

10. Conclusion

Approximate programming models need tools that help de-

velopers decide how much reliability is necessary through-

out an algorithm. Especially when probabilistic operation is

involved, manual reasoning about individual operator relia-

bilities can be tedious and error-prone. On the other hand,

fully automatic approaches are also problematic: since ap-

proximation has broad implications for software correctness,

programmers sometimes need fine-grained control over its

effects. An opaque auto-tuner sacrifices programmer visibil-

ity and control. DECAF’s solver-aided type inference offers

an intermediate solution that lets programmers write con-

straints only where they are most relevant. Combined with

code specialization and dynamic tracking, DECAF gives

programmers flexible control over the efficiency–accuracy

trade-offs offered by approximate hardware.
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A. Full Semantics and Proof

This appendix expands on the formalism overview in Sec-

tion 7. We present the full syntax, static semantics, and dy-

namic semantics for the core DECAF language. We prove a

soundness theorem that embodies the probability type sys-

tem’s fundamental accuracy guarantee.

A.1 Syntax

We formalize a core of DECAF without inference. The syn-

tax for statements, expressions, and types is:

s ::= T v := e | v := e | s ; s | if e s s |while e s | skip

e ::= c | v | e⊕p e | endorse(p, e) | check(p, e) | track(p, e)

⊕ ::= + | − | × | ÷

T ::= q τ

q ::= @Approx(p) | @Dyn

τ ::= int | float

v ∈ variables, c ∈ constants, p ∈ [0.0, 1.0]

For the purpose of the static and dynamic semantics, we also

define values V , heaps H , dynamic probability maps D, true

probability maps S, and static contexts Γ:

V ::= c |�

H ::= · |H, v 7→ V

D ::= · |D, v 7→ p

S ::= · | S, v 7→ p

Γ ::= · | Γ, v 7→ T

We define H(v), D(v), S(v), and Γ(v) to denote variable

lookup in these maps.

A.2 Typing

The type system defines the static semantics for the core

language. We first give typing judgments for expressions and

then for statements.

A.2.1 Operator Typing

We introduce a helper “function” that determines the unqual-

ified result type of a binary arithmetic operator.

optype(τ1, τ2) = τ3

optype(τ, τ) = τ optype(int, float) = float

optype(float, int) = float

Now we can give the types of the binary operator expressions

themselves. There are two cases: one for statically-typed op-

erators and one for dynamic tracking. The operands may not

mix static and dynamic qualifiers (recall that the compiler

inserts track casts to introduce dynamic tracking when nec-

essary).

Γ ⊢ e : T

OP-STATIC-TYPES

Γ ⊢ e1 : @Approx(p1) τ1 Γ ⊢ e2 : @Approx(p2) τ2
τ3 = optype(τ1, τ2) p′ = p1 · p2 · pop

Γ ⊢ e1 ⊕pop
e2 : @Approx(p′) τ3

OP-DYN-TYPES

Γ ⊢ e1 : @Dyn τ1
Γ ⊢ e2 : @Dyn τ2 τ3 = optype(τ1, τ2)

Γ ⊢ e1 ⊕p e2 : @Dyn τ3

In the static case, the output probability is the product of the

probabilities for the left-hand operand, right-hand operand,

and the operator itself. Section 3 gives the probabilistic intu-

ition behind this rule.

A.2.2 Other Expressions

The rules for constants and variables are straightforward.

Literals are given the precise (p = 1.0) type.

CONST-INT-TYPES

c is an integer

Γ ⊢ c : @Approx(1.0) int

CONST-FLOAT-TYPES

c is not an integer

Γ ⊢ c : @Approx(1.0) float

VAR-TYPES

T = Γ(v)

Γ ⊢ v : T

Endorsements, both checked and unchecked, produce

the explicitly requested type. (Note that check is sound but

endorse is potentially unsound: our main soundness theo-

rem, at the end of this appendix, will exclude the latter from

the language.) Similarly, track casts produce a dynamically-

tracked type given a statically-tracked counterpart.

ENDORSE-TYPES

Γ ⊢ e : q τ

Γ ⊢ endorse(p, e) : @Approx(p) τ

CHECK-TYPES

Γ ⊢ e : @Dyn τ

Γ ⊢ check(p, e) : @Approx(p) τ

TRACK-TYPES

Γ ⊢ e : @Approx(p′) τ p ≤ p′

Γ ⊢ track(p, e) : @Dyn τ

A.2.3 Qualifiers and Subtyping

A simple subtyping relation, introduced in Section 3, makes

high-probability types subtypes of their low-probability

counterparts.

T1 ≺ T2

SUBTYPING

p ≥ p′

@Approx(p) τ ≺ @Approx(p′) τ



Subtyping uses a standard subsumption rule.

SUBSUMPTION

T1 ≺ T2 Γ ⊢ e : T1

Γ ⊢ e : T2

A.2.4 Statement Typing

Our typing judgment for statements builds up the context Γ.

Γ1 ⊢ s : Γ2

SKIP-TYPES

Γ ⊢ skip : Γ

SEQ-TYPES

Γ1 ⊢ s1 : Γ2 Γ2 ⊢ s2 : Γ3

Γ1 ⊢ s1; s2 : Γ3

DECL-TYPES

Γ ⊢ e : T v /∈ Γ

Γ ⊢ T v := e : Γ, v : T

MUTATE-TYPES

Γ ⊢ e : T Γ(v) = T

Γ ⊢ v := e : Γ

IF-TYPES

Γ ⊢ e : @Approx(1.0) τ Γ ⊢ s1 : Γ1 Γ ⊢ s2 : Γ2

Γ ⊢ if e s1 s2 : Γ

WHILE-TYPES

Γ ⊢ e : @Approx(1.0) τ Γ ⊢ s : Γ′

Γ ⊢ while e s : Γ

The conditions in if and while statements are required to have

the precise type (p = 1.0).

A.3 Operational Semantics

We use a large-step operational semantics for expressions

and small-step semantics for statements. Both are nondeter-

ministic: values produced by approximate operators can pro-

duce either an error value � or a concrete number.

A.3.1 Expression Semantics

There are two judgments for expressions: one for statically

typed expressions and one where dynamic tracking is used.

The former, H;D;S; e ⇓p V , indicates that the expression

e produces a value V , which is either a constant c or the

error value �, and p is the probability that V 6= �. The

latter judgment, H;D;S; e ⇓p V, pd, models dynamically-

tracked expression evaluation. In addition to a value V , it

also produces a computed probability value pd reflecting the

compiler’s conservative bound on the reliability of e’s value.

That is, p is the “true” probability that V 6= � whereas pd is

the dynamically computed conservative bound for p.

In these judgments, H is the heap mapping variables to

values and D is the dynamic probability map for @Dyn-typed

variables maintained by the compiler. The S probability map

is used for our type soundness proof: it maintains the actual

probability that a variable is correct.

Constants Literals are always tracked statically.

CONST

H;D;S; c ⇓1.0 c

Variables Variable lookup is dynamically tracked when

the variable is present in the tracking map D. The probability

S(v) is the chance that the variable does not hold �.

VAR

v 6∈ D

H;D;S; v ⇓S(v) H(v)

VAR-DYN

v ∈ D

H;D;S; v ⇓S(v) H(v), D(v)

Endorsements Unchecked (unsound) endorsements only

apply to statically-tracked values and do not affect the cor-

rectness probability.

ENDORSE

H;D;S; e ⇓p V

H;D;S; endorse(pe, e) ⇓p V

Checked Endorsements Checked endorsements apply to

dynamically-tracked values and produce statically-tracked

values. The tracked probability must meet or exceed the

check’s required probability; otherwise, evaluation gets

stuck. (Our implementation throws an exception.)

CHECK

H;D;S; e ⇓p V, p1 p1 ≥ p2

H;D;S; check(p2, e) ⇓p V

Tracking The static-to-dynamic cast expression allows

statically-typed values to be combined with dynamically-

tracked ones. The tracked probability field for the value is

initialized to match the explicit probability in the expression.

TRACK

H;D;S; e ⇓p V

H;D;S; track(pd, e) ⇓p V, pd

Operators Binary operators can be either statically tracked

or dynamically tracked. In each case, either operand can

be the error value or a constant. When either operand is

�, the result is �. When both operands are non-errors, the

operator itself can (nondeterministically) produce either �

or a correct result. The correctness probability, however,

is the same for all three rules: intuitively, the probability

itself is deterministic even though the semantics overall are

nondeterministic.

In these rules, c1 ⊕ c2 without a probability subscript de-

notes the appropriate binary operation on integer or floating-

point values. The statically-tracked cases are:

OP

H;D;S; e1 ⇓p1
c1

H;D;S; e2 ⇓p2
c2 p = p1 · p2 · pop

H;D;S; e1 ⊕pop
e2 ⇓p c1 ⊕ c2

OP-OPERATOR-INCORRECT

H;D;S; e1 ⇓p1
c1

H;D;S; e2 ⇓p2
c2 p = p1 · p2 · pop

H;D;S; e1 ⊕pop
e2 ⇓p �

OP-OPERANDS-INCORRECT

H;D;S; e1 ⇓p1
� or H;D;S; e2 ⇓p2

�

p = p1 · p2 · pop

H;D;S; e1 ⊕pop
e2 ⇓p �



The dynamic-tracking rules are similar, with the addi-

tional propagation of the conservative probability field.

OP-DYN

H;D;S; e1 ⇓p1
c1, pd1

H;D;S; e2 ⇓p2
c2, pd2 p = p1 · p2 · pop

H;D;S; e1 ⊕pop
e2 ⇓p c1 ⊕ c2, pd1 · pd2 · pop

OP-DYN-OPERATOR-INCORRECT

H;D;S; e1 ⇓p1
c1, pd1

H;D;S; e2 ⇓p2
c2, pd2 p = p1 · p2 · pop

H;D;S; e1 ⊕pop
e2 ⇓p �, pd1 · pd2 · pop

OP-DYN-OPERANDS-INCORRECT

H;D;S; e1 ⇓p1
�, pd1 or H;D;S; e2 ⇓p2

�, pd2
p = p1 · p2 · pop

H;D;S; e1 ⊕pop
e2 ⇓p �, pd1 · pd2 · pop

A.3.2 Statement Semantics

The small-step judgment for statements is H;D;S; s −→
H ′;D′;S′; s′.

Assignment The rules for assignment (initializing a fresh

variable) take advantage of nondeterminism in the evaluation

of expressions to nondeterministically update the heap with

either a constant or the error value, �.

H;D; s −→ H ′;D′; s′

ASSIGN

H;D;S; e ⇓p V

H;D;S;@Approx(p′) τ v := e −→
H, v 7→ V ;D;S, v 7→ p; skip

ASSIGN-DYN

H;D;S; e ⇓p V, pd

H;D;S;@Dyn τ v := e −→
H, v 7→ V ;D, v 7→ pd;S, v 7→ p; skip

Mutation works like assignment, but existing variables

are overwritten in the heap.

MUTATE

H;D;S; e ⇓p V

H;D;S; v := e −→ H, v 7→ V ;D;S, v 7→ p; skip

MUTATE-DYN

H;D; e ⇓p V, pd

H;D; v := e −→ H, v 7→ V ;D, v 7→ pd;S, v 7→ p; skip

Sequencing Sequencing is standard and deterministic.

SEQ-SKIP

H;D;S; skip;s −→ H;D;S; s

SEQ

H;D;S; s1 −→ H ′;D′;S′; s′1
H;D;S; s1;s2 −→ H ′;D′;S′; s′1;s2

If and While The type system requires conditions in if and

while control flow decisions to be deterministic (p = 1.0).

IF-TRUE

H;D;S; e ⇓1.0 c c 6= 0

H;D;S; if e s1 s2 −→ H;D;S; s1

IF-FALSE

H;D;S; e ⇓1.0 c c = 0

H;D;S; if e s1 s2 −→ H;D;S; s2

WHILE

H;D;S;while e s −→ H;D;S; if e (s;while e s) skip

A.4 Theorems

The purpose of the formalism is to express a soundness

theorem that shows that DECAF’s probability types act as

lower bounds on programs’ run-time probabilities. We also

sketch the proof of a theorem stating that the bookkeeping

probability map, S, is eraseable: it is used only for the

purpose of our soundness theorem and does not affect the

heap.

A.4.1 Soundness

The soundness theorem for the language states that the prob-

ability types are lower bounds on the run-time correctness

probabilities. Specifically, both the static types @Approx(p)

and the dynamically tracked probabilities in D are lower

bounds for the corresponding probabilities in S.

To state the soundness theorem, we first define well-

formed dynamic states. We write ⊢ D,S : Γ to denote

that the dynamic probability field map D and the actual

probability map S are well-formed in the static context Γ.

Definition 1 (Well-Formed). ⊢ D,S : Γ iff for all v ∈ Γ,

• If Γ(v) = @Approx(p) τ , then p ≤ S(v) or v /∈ S.

• If Γ(v) = @Dyn τ , then D(v) ≤ S(v) or v /∈ S.

We can now state and prove the soundness theorem. We

first give the main theorem and then two preservation lem-

mas, one for expressions and one for statements.

Theorem 1 (Soundness). For all programs s with no endorse

expressions, for all n ∈ N where ·; ·; ·; s −→n H;D;S; s′,
if · ⊢ s : Γ, then ⊢ D,S : Γ.

Proof. Induct on the number of small steps, n. When n = 0,

both conditions hold trivially since v /∈ · for all v.

For the inductive case, we assume that ·; ·; ·; s −→n

H1;D1;S1; s1 and H1;D1;S1; s1 −→ H2;D2;S2; s2 and

that ⊢ D1, S1 : Γ. We need to show that ⊢ D2, S2 : Γ
also. The Statement Preservation lemma, below, applies and

meets this goal.

The first lemma is a preservation property for expres-

sions. We will use this lemma to prove a corresponding

preservation lemma for statements, which in turn applies to

prove the main theorem.



Lemma 1 (Expression Preservation). For all expressions e
with no endorse expressions where Γ ⊢ e : T and where

⊢ D,S : Γ,

• If T = @Approx(p) τ , and H;D;S; e ⇓p′ V , then p ≤ p′.
• If T = @Dyn τ , and H;D;S; e ⇓p′ V, p, then p ≤ p′.

Proof. Induct on the typing judgment for expressions, Γ ⊢
e : T .

Case OP-STATIC-TYPES Here, e = e1 ⊕pop
e2 and T =

@Approx(p) τ . We also have types for the operands: Γ ⊢ e1 :
@Approx(p1) τ1 and Γ ⊢ e2 : @Approx(p2) τ2.

By inversion on H;D;S; e ⇓p′ V (in any of the cases OP,

OP-OPERATOR-INCORRECT, or OP-OPERANDS-INCORRECT),

p′ = p′1·p
′

2·pop where H;D;S; e1 ⇓p′

1
V1 and H;D;S; e2 ⇓p′

2

V2.

By applying the induction hypothesis to e1 and e2, we

have p1 ≤ p′1 and p2 ≤ p′2. Therefore, p1·p2·pop ≤ p′1·p
′

2·pop

and, by substitution, p ≤ p′.

Case OP-DYN-TYPES The case for dynamically-tracked

expressions is similar. Here, e = e1⊕pop
e2 and T = @Dynτ ,

and the operand types are Γ ⊢ e1 : @Dyn τ1 and Γ ⊢ e2 :
@Dyn τ2.

By inversion on H;D;S; e ⇓p′ V, p (in any of the cases

OP-DYN, OP-DYN-OPERATOR-INCORRECT, or OP-DYN-

OPERANDS-INCORRECT), p′ = p′1 ·p
′

2 ·pop, p = pd1 ·pd2 ·pop

where H;D;S; e1 ⇓p′

1
V1, pd1 and H;D;S; e2 ⇓p′

2
V2, pd2.

By applying the induction hypothesis to e1 and e2, we

have pd1 ≤ p′1 and pd2 ≤ p′2. Therefore, pd1 · pd2 · pop ≤
p′1 · p

′

2 · pop and, by substitution, p ≤ p′.

Case CONST-INT-TYPES and CONST-FLOAT-TYPES Here,

Γ ⊢ e : @Approx(p) τ where τ ∈ {int, float} and p = 1.0.

By inversion on H;D;S; e ⇓p′ V we get p′ = 1.0.

Because 1.0 ≤ 1.0, we have p ≤ p′.

Case VAR-TYPES Here, e = v, Γ ⊢ v : T . Destructing T
yields two subcases.

• Case T = @Approx(p) τ : By inversion on H;D;S; e ⇓p′

V we have p′ = S(V ).
The definition of well-formedness gives us p ≤ S(V ).
By substitution, p ≤ p′.

• Case T = @Dyn τ : By inversion on H;D;S; e ⇓p′ V, p,

we have p′ = S(V ) and p = D(V ).
Well-formedness gives us D(V ) ≤ S(V ).
By substitution, p ≤ p′.

Case ENDORSE-TYPES The expression e may not contain

endorse expressions so the claim holds vacuously.

Case CHECK-TYPES Here, e = check(p, ec).
By inversion on H;D;S; e ⇓p′ V , we have H;D;S; ec ⇓p′

V, p′′, and p ≤ p′′.
By applying the induction hypothesis to H;D;S; ec ⇓p′

V, p′′, we get p′′ ≤ p′.
By transitivity of inequalities, p ≤ p′.

Case TRACK-TYPES Here, e = track(pt, et), Γ ⊢ et :
@Approx(p′′), and p ≤ p′′.

By inversion on H;D;S; e ⇓p′ V, p, we get H;D;S; et ⇓p′

V .

By applying the induction hypothesis to H;D;S; et ⇓p′

V , we get p′′ ≤ p′.
By transitivity of inequalities, p ≤ p′.

Case SUBSUMPTION The case where T = @Approx(p) τ
applies. There is one rule for subtyping, so we have Γ ⊢ e :
@Approx(ps) τ where ps ≥ p. By induction, ps ≤ p′, so

p ≤ p′.

Finally, we use this preservation lemma for expressions

to prove a preservation lemma for statements, completing

the main soundness proof.

Lemma 2 (Statement Preservation). For all programs s with

no endorse expressions, if Γ ⊢ s : Γ′, and ⊢ D,S : Γ, and

H;D;S −→ H ′;D′;S′, then ⊢ D′, S′ : Γ′.

Proof. We induct on the derivation of the statement typing

judgment, Γ ⊢ s : Γ′.

Cases SKIP-TYPES, IF-TYPES, and WHILE-TYPES In

these cases, Γ = Γ′, D = D′, and S = S′, so preservation

holds trivially.

Case SEQ-TYPES Here, s = s1; s2 and the typing judg-

ments for the two component statements are Γ ⊢ s1 : Γ2

and Γ2 ⊢ s2 : Γ′. If s1 = skip, then the case is trivial.

Otherwise, by inversion on the small step, H;D;S; s1 −→
H ′;D′;S′; s′1 and, by the induction hypothesis, ⊢ D′

1, S
′

1 :
Γ.

Case DECL-TYPES The statement s is Tv := e where

Γ ⊢ e : T and Γ′ = Γ, v : T . We consider two cases:

either T = @Approx(p) τ or T = @Dyn τ . In either case, the

expression preservation lemma applies.

In the first case, H;D;S; e ⇓p′ V where p ≤ p′ via

expression preservation and, by inversion, S′ = S, v 7→ p
and D′ = D. Since S′(v) = p ≤ p′, the well-formedness

property ⊢ D,S : Γ′ continues to hold.

In the second case H;D;S; e ⇓p′ V, pd where pd ≤ p′.
By inversion, S′ = S, v 7→ p and D′ = D, v 7→ pd. Since

D′(v) = pd ≤ p′, we again have ⊢ D,S : Γ′.

Case MUTATE-TYPES The case where s is v := e pro-

ceeds similarly to the above case for declarations.

A.4.2 Erasure of Probability Bookkeeping

We state (and sketch a proof for) an erasure property that

shows that the “true” probabilities in our semantics, called

S, do not affect execution. This property emphasizes that

S is bookkeeping for the purpose of stating our soundness

result—it corresponds to no run-time data. Intuitively, the

theorem states that the steps taken in our dynamic semantics

are insensitive to S: that S has no effect on which H ′, D′, or

s′ can be produced.



In this statement, Dom(S) denotes the set of variables in

the mapping S.

Theorem 2 (Bookkeeping Erasure). If H;D;S1; s −→n

H ′;D′;S′

1; s
′, then for any probability map S2 for which

Dom(S1) = Dom(S2), there exists another map S′

2 such

that H;D;S2; s −→
n H ′;D′;S′

2; s
′.

Proof sketch. The intuition for the erasure property is that

no rule in the semantics uses S(v) for anything other than

producing a probability in the ⇓p judgment, and that those

probabilities are only ever stored back into S.

The proof proceeds by inducting on the number of steps,

n. The base case (n = 0) is trivial; for the inductive case,

the goal is to show that a single step preserves H ′, D′,

and s′ when the left-hand probability map S is replaced.

Two lemmas show that replacing S with S′ in the expres-

sion judgments leads to the same result value V and, in

the dynamically-tracked case, the same tracking probability

pd. Finally, structural induction on the small-step statement

judgment shows that, in every rule, the expression probabil-

ity only affects S itself.


	Introduction
	Language Overview
	Probability Type System
	Inferring Probability Types
	Function Specialization

	Optional Dynamic Tracking
	Using the Language
	Formalism
	Evaluation
	Implementation
	Experimental Setup
	Benchmarks and Annotation
	Results
	Sensitivity to Hardware Reliability Levels
	Interprocedural Inference and Specialization
	Dynamic Tracking
	Tool Performance

	Related Work
	Conclusion
	Full Semantics and Proof
	Syntax
	Typing
	Operator Typing
	Other Expressions
	Qualifiers and Subtyping
	Statement Typing

	Operational Semantics
	Expression Semantics
	Statement Semantics

	Theorems
	Soundness
	Erasure of Probability Bookkeeping



