
Symbolic Execution of Multithreaded
Programs from Arbitrary Program Contexts

Tom Bergan Dan Grossman Luis Ceze
University of Washington, Department of Computer Science & Engineering

{tbergan,djg,luisceze}@cs.washington.edu

Abstract
We describe an algorithm to perform symbolic execution of
a multithreaded program starting from an arbitrary program
context. We argue that this can enable more efficient sym-
bolic exploration of deep code paths in multithreaded pro-
grams by allowing the symbolic engine to jump directly to
program contexts of interest.

The key challenge is modeling the initial context with rea-
sonable precision—an overly approximate model leads to
exploration of many infeasible paths during symbolic exe-
cution, while a very precise model would be so expensive
to compute that computing it would defeat the purpose of
jumping directly to the initial context in the first place. We
propose a context-specific dataflow analysis that approxi-
mates the initial context cheaply, but precisely enough to
avoid some common causes of infeasible-path explosion.
This model is necessarily approximate—it may leave por-
tions of the memory state unconstrained, leaving our sym-
bolic execution unable to answer simple questions such as
“which thread holds lock A?”. For such cases, we describe
a novel algorithm for evaluating symbolic synchronization
during symbolic execution. Our symbolic execution seman-
tics are sound and complete up to the limits of the underlying
SMT solver. We describe initial experiments on an imple-
mentation in Cloud9.

Categories and Subject Descriptors D.1.3 [Programming
Languages]: Concurrent Programming; D.2.5 [Software
Engineering]: Testing and Debugging—Symbolic Execu-
tion

Keywords static analysis; symbolic execution; multithread-
ing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
OOPSLA ’14, October 20–24, 2014, Portland, OR, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2585-1/14/10.
http://dx.doi.org/10.1145/2660193.2660200

1. Introduction
Symbolic execution is a program analysis technique for sys-
tematically exploring all feasible execution paths. The idea
is to execute programs with symbolic rather than concrete in-
puts and use an SMT (SAT Modulo Theory) solver to prune
infeasible paths. On branches with more than one feasible
resolution, the symbolic state is forked and all feasible res-
olutions are explored. The key advantage of this approach
is precision—unlike other techniques, such as abstract inter-
pretation, symbolic execution is generally free of false pos-
itives because its semantics are fully precise up to the limits
of the underlying SMT solver, and recent advances in SMT
solving have made symbolic execution faster and more prac-
tical [19, 33].

Symbolic execution has been used to find bugs and gen-
erate high-coverage test cases with great success [10, 13,
22, 23, 39]. Unfortunately, building scalable symbolic ex-
ecution engines is difficult because of path explosion: the
number of feasible execution paths is generally exponential
in the length of an execution. Path explosion is even worse
when symbolic execution is applied to multithreaded pro-
grams [9, 27], which suffer from an explosion of possible
thread interleavings in addition to the explosion of single-
threaded paths. Prior work has dealt with path explosion
using summarization [20, 24, 36], path merging [25, 28],
search heuristics [8, 10, 31, 34], and partial order reduc-
tions [18].

Our goal is scalable symbolic execution of multithreaded
programs written in the C language and its derivatives. Our
approach is to limit path explosion by symbolically execut-
ing relatively small fragments of a program in isolation—
this reduces path length, which in turn reduces the potential
for path explosion. Rather than exploring ways that program
fragments might be selected, this paper focuses on a more
basic question: how do we symbolically execute a fragment
of a multithreaded program in isolation, soundly and effi-
ciently? Prior work has largely assumed that symbolic ex-
ecution will begin at one of a few natural starting points,
such as program entry (for whole-program testing) or a func-
tion call (for single-threaded unit testing). We do not make
such an assumption—we allow program fragments to be-
gin anywhere—so our main challenge is to perform sym-

1 global int X,Y

2 global struct Node { Lock lock, int data } nodes[]

34 Thread 1 Thread 2

5 void RunA() { void RunB() {

6 i = ... k = ...

7 Foo(&nodes[i]) Bar(&nodes[k])

8 } }

9 void Foo(Node *a) { void Bar(Node *b) {

10 for (x in 1..X) { lock(b->lock)

11 ⇒ lock(a->lock) ⇒ for (y in 1..Y)

12

Figure 1. A simple multithreaded program that illustrates
the challenges of beginning symbolic execution at an arbi-
trary program context. Especially notable are challenges that
arise from explicit synchronization and from C-like pointers.

bolic execution of multithreaded programs from arbitrary
program contexts.

1.1 Problem Statement and Solution Overview
Specifically, we address the following problem: given an ini-
tial program context, which we define to be a set of threads
and their program counters, how do we efficiently perform
symbolic execution starting from that context while soundly
accounting for all possible concrete initial states? We solve
this problem in two parts. First, we use a context-specific
dataflow analysis to construct an over-approximation of the
initial state for the given program context. Second, we inte-
grate that analysis with a novel symbolic execution semantics
that can execute forward from an abstract initial state, even
when precise information about pointers and synchroniza-
tion is not available.

Constructing an Initial State. The most precise strategy
is to symbolically execute all paths from program entry
to the initial context, and then use path merging [25] to
construct an initial state. This is not scalable—it suffers
from exactly the sort of path explosion problems we are
trying to avoid. Instead, we must approximate the initial
state. The least precise approximation is to leave the initial
state completely unconstrained, for example by assigning a
fresh symbolic variable to every memory location. This is
too conservative—it covers many memory states that never
occur during any actual execution—and as a result, symbolic
execution would investigate many infeasible paths.

Our solution represents a middle ground between the
above two extremes: we use a context-specific dataflow anal-
ysis to construct a sound over-approximation of the initial
state. We use an over-approximation to ensure that all feasi-
ble concrete initial states are included. Our analysis includes
constraints on the initial memory state as well as constraints
on synchronization, such as locksets, that together help sym-
bolic execution avoid infeasible paths.

To illustrate, suppose we are asked to begin symbolic
execution from the program context marked by arrows in
Figure 1. This context includes two threads, each of which
is about to execute line 11. Can lines 11 and 12 of Foo

execute concurrently with lines 11 and 12 of Bar? To answer
this we must first answer a different question: does thread
t2 hold any locks at the beginning of the program context
(i.e., at line 11)? Here we examine the locksets embedded in
our initial state and learn that t2 holds lock b->lock. Next,
we ask another question: does a==b? Suppose our dataflow
analysis determines that i==k at line 6, and that Foo and Bar
are called from RunA and RunB only. In this case, we know
that a==b, which means that line 11 of Foo cannot execute
concurrently with line 11 of Bar.

Symbolic Execution Semantics. The input to sym-
bolic execution is an abstract initial state constructed by
our dataflow analysis. The output is a set of pairs (path, C),
where path is a path of execution and C is a path constraint:
if C is satisfied on an initial state, it must be possible for
execution to follow the corresponding path from that initial
state, as long as context switches are made in the appro-
priate places. To support multithreaded programs, we make
each path a serialized (sequentially consistent) trace of a
multithreaded execution.

Our symbolic execution begins from an initial state that
is necessarily approximate, leaving us unable to precisely
answer simple questions such as “which object does pointer
X refer to?” in all cases. For example, suppose our dataflow
analysis cannot prove that i==k at line 6. In this case, we
must investigate two paths during symbolic execution: one
in which a==b, and another in which a!=b. For this reason,
the set of paths explored by our symbolic execution may be
a superset of the set of paths that are actually feasible.

We attempt to avoid infeasible paths using two ap-
proaches: first, a novel algorithm for evaluating symbolic
synchronization (§4.2-4.3), and second, an algorithm for
evaluating symbolic pointers that incorporates ideas from
prior work [12, 15] (§3.2)).

Dealing with Data Races. A key question for any analy-
sis of multithreaded programs is how to deal with data races.
Our symbolic semantics treat data races as runtime errors
that halt execution. Our dataflow analysis assumes race free-
dom and ignores data races entirely—we believe this is the
only practical approach in the dataflow setting, particularly
for C programs, where a conservative analysis is technically
required to assume the possibility of “undefined behavior”
when it cannot prove that the program is race free [6] (and
proving race freedom is incredibly difficult).

Soundness and Completeness. Our symbolic semantics
are sound and complete up to the limits of the underlying
SMT solver. By sound, we mean that if our symbolic execu-
tion outputs a pair (path, C), then, from every concrete ini-
tial state that satisfies constraint C, concrete execution must
follow path as long as context switches are made just as in
path. By complete, we mean that symbolic execution out-
puts a set of pairs (path, C) sufficient to cover all possible
concrete initial states that may arise during any valid execu-
tion of the program. However, our analysis is incomplete in

practice: first, SMT solvers are incomplete in practice, and
second, the set of feasible paths can be too large to enumer-
ate in practice.

1.2 Applications
Our techniques have a variety of promising applications:

Focused Testing of Program Fragments. We can test
an important parallel loop in the context of a larger pro-
gram. Classic symbolic execution techniques require execut-
ing deep code paths from program entry to reach the loop in
the first place, where these deep paths may include complex
initialization code or prior parallel phases. Our techniques
enable testing the loop directly, using a fast and scalable
dataflow analysis to summarize the initial deep paths.

Testing Libraries. We would ideally test a concurrent
library over all inputs and calling contexts, but as this is often
infeasible, we instead might want to prioritize the specific
contexts a library is called from by a specific program. One
such prioritization strategy is to enumerate all pairs of calls
into the library that may run concurrently, then treat each
pair as a program context that can be symbolically executed
using our techniques. Then do the same for every triple of
concurrent calls, every quadruple, and so on.

Piecewise Program Testing. Rather than testing a whole
program with one long symbolic execution, we can break the
program into adjacent fragments and test each fragment in
isolation. Such a piecewise testing scheme might enumerate
fragments dynamically by queuing the next fragments found
to be reachable from the current fragment. Fragments might
end at loop backedges, for loops with input-dependent itera-
tion counts, producing a set of fragments that are each short
and largely acyclic. The key advantage is that we can explore
fragments in parallel, as they are enumerated, enabling us to
more quickly reach a variety of deep paths in the program’s
execution. The trade-off is a potential loss of precision, as
our dataflow analysis may make conservative assumptions
when constructing each fragment’s initial abstract state.

Execution Reconstruction. We can record an execu-
tion with periodic lightweight checkpoints that include call
stacks and little else. Then, on a crash, we can symbolically
execute from a checkpoint onwards to reconstruct the bug.
Variants of this approach include bbr [12] and RES [42].
However, bbr does not work for multithreaded programs,
and both systems have less powerful support for pointers
than does our semantics.

Input-Covering Schedules. We have used our sym-
bolic execution techniques as part of an algorithm for find-
ing input-covering schedules. This algorithm, which we de-
scribe in prior work [2], partitions execution into adjacent
fragments and uses symbolic execution to analyze each frag-
ment in isolation. In §7, we evaluate our symbolic execution
techniques in the context of this algorithm.

1.3 Contributions and Outline
We propose a framework for solving the basic problem—
symbolic execution from arbitrary multithreaded contexts.
In particular, we make two primary contributions:

• We propose a way to integrate dataflow analysis with
symbolic execution (§2.3, §3.3, §4.4). In particular, our
dataflow analysis computes a cheap summary that is used
as the starting point for symbolic execution. Deciding
which dataflow analysis to use is a hard problem, as hun-
dreds have been proposed and the best choice is likely
application-dependent. We combine reaching definitions,
which summarize the state of memory, with locksets and
barrier matching, which summarize the state of synchro-
nization.
• We propose a novel algorithm for evaluating symbolic

synchronization (§4.2–§4.3). While prior work has largely
focused on path explosion due to branches, we focus on
path explosion due to synchronization, which is often
symbolic in our context.

Outline. We start with a simple, single-threaded impera-
tive language that has no pointers (§2). We then add pointers
(§3) and threads (§4). At each step, we explain how we over-
come the challenges introduced by each additional language
feature. We then state soundness and completeness theorems
(§5), discuss our implementation (§6) and empirical evalua-
tion (§7), and end with related work (§8).

2. A Simple Imperative Language
Figure 2 gives the syntax of Simp, a simple imperative lan-
guage that we use as a starting point. A program in this lan-
guage contains a set of functions, including a distinguished
main function for program entry. The language includes
function calls, conditional branching, mutable local vari-
ables, and a set of standard arithmetic and boolean expres-
sions (only partially shown). We separate side-effect-free ex-
pressions from statements. This simple language does not
include pointers, dynamic memory allocation, or threads—
those language features will be added in §3 and §4.

The concrete semantics follow the standard pattern for
imperative, lexically-scoped, call-by-value languages. We
omit the detailed rules for brevity. We use r to refer to local
variables (or “registers”). The metavariables x and y do not
appear in the actual concrete language—instead, x and y
are used to name symbolic constants that represent unknown
values during symbolic execution, as described below.

Challenges. Although this language is simple, it reveals
two ways in which symbolic execution from arbitrary con-
texts can be imprecise. Specifically, we use this language
to demonstrate imprecision due to unknown calling contexts
(§2.2) and unknown values of local variables (§2.3). We also
use this language to present basic frameworks that we will
reuse in the rest of this paper.

r ∈ Var (local variables)
x, y ∈ SymbolicConst (symbolic constants)
f ∈ FName (function names)
i∈ Z (integers)

v ∈ Value ::= f | i
e∈ Expr ::= v | r | x | e ∧ e | e ∨ e | e < e | ...

γ ∈ StmtLabel
s∈ Stmt ::= r ← e(e∗)

| br e, γt, γf
| return e

Func ::= func f(r∗){ (γ : s;)∗ }

Figure 2. Syntax of Simp. Asterisks (∗) denote repetition.

2.1 Symbolic Semantics Overview
We now describe an algorithm to perform symbolic execu-
tion of Simp programs. Our algorithm operates over sym-
bolic states that contain the following domains (also illus-
trated in Figure 3):

• Y, which is a stack of local variable bindings. A new
stack frame is pushed by each function call and popped
by the matching return. Variables are bound to either
function arguments (for formal parameters) or the result
of a statement (as in r ← f()).
• CallCtx, which names the current calling context, where

the youngest stack label is the thread’s current program
counter and older labels are return addresses.
• path, which records an execution trace.
• C, an expression that records the current path constraint.

Constructing an Initial State. Recall from §1.1 that our
job is to perform symbolic execution from an arbitrary pro-
gram context that is specified by a set of program counters,
one for each thread. As Simp is single-threaded, the initial
program context for Simp programs contains just one pro-
gram counter, γ0.

Given γ0, where γ0 is a statement in function f0, we
must construct an initial symbolic state, Sinit, from which
we can begin symbolic execution. A simple approach is:
pathinit = empty; Cinit = true; CallCtxinit = {γ0}; and
Yinit = {{ri → xi| ∀ri ∈ f0}}. Yinit contains one stack
frame that maps each ri ∈ f0 to a distinct symbolic constant
xi. We describe a more precise approach in §2.3.

Correspondence of Concrete and Symbolic States.
Note that we use symbolic constants, such as xi, above, to
represent unknown parts of a symbolic state. This allows
each symbolic state to represent a set of concrete states.
Specifically, the set of concrete states represented by Sinit

can be found by enumerating the total set of assignments of
symbolic constants xi to values vi—each such assignment
corresponds to a concrete state in which xi = vi.

Y : Stack of (Var→ Expr) (local variables)
CallCtx : Stack of StmtLabel (calling context)

path : List of StmtLabel (execution trace)
C : Expr (path constraint)

Figure 3. Symbolic state for Simp.

Symbolic Execution. At a high level, symbolic execu-
tion is straightforward. We begin from the initial state, Sinit.
We execute one statement at a time using step, which is de-
fined below. At branches, we use an SMT solver to deter-
mine which branch edges are feasible and we fork as neces-
sary. We repeatedly execute step on non-terminated states
until all states have terminated or until a user-defined re-
source budget has been exceeded. We define step as follows,
and we also make use of an auxiliary function eval to eval-
uate side-effect-free expressions:

• step : (State× Stmt)→ Set of State
Evaluates a single statement under an initial state and
produces a set of states, as we may fork execution at con-
trol flow statements to separately evaluate each feasible
branch. The type of each State is given by Figure 3.
• eval : ((Var→ Expr)× Expr)→ Expr

Given eval(Y, e), we evaluate expression e under binding
Y, where Y represents a single stack frame. We expect
that Y has a binding for every local variable referenced
by e. Note that eval returns an Expr rather than a Value,
as we cannot completely reduce expressions that contain
symbolic constants.

Our algorithm’s final result is a set of States from which
we can extract (path,C) pairs that represent our final output.
For each such pair, C is an expression that constrains the
initial symbolic state, Sinit, such that when C is satisfied,
program execution must follow the corresponding path.

SMT Solver Interface. Our symbolic semantics relies
on an SMT solver that we query using the following in-
terface. The function isSat(C, e), shown below, determines
if boolean expression e is satisfiable under the constraints
given by expression C, where C is a conjunction of assump-
tions. In addition to isSat, we use mayBeTrue and mustBe-
True as syntactic sugar, as defined below.

isSat(C, e) = true iff e is satisfiable under C
mayBeTrue(C, e) = isSat(C, e)
mustBeTrue(C, e) = ¬mayBeTrue(C,¬e)

If a query isSat(C, e) cannot be solved, then our symbolic
execution becomes incomplete. In this case, we concretize
enough subexpressions of e so the query becomes solvable
and we can make forward progress (similarly to Pasareanu
et al. [35]).

2.2 Dealing with an Underspecified CallCtx
Recall that the initial program context is simply a single
program counter, γ0. If γ0 is not a statement in the main

function, then the initial state Sinit does not have a complete
call stack. How do we reconstruct a complete call stack?

We could start with a single stack frame and then lazily
expand older frames, forking as necessary to explore all
paths through the static call graph. However, we consider
this overkill for our anticipated applications (recall §1.2),
and instead opt to exit the program when the initial stack
frame returns. Our rationale is that, for each application
listed in §1.2, either the program fragment of interest will
be lexically scoped, in which case we never return from
the initial stack frames anyway, or complete call stacks will
be provided, which we can use directly (e.g., we expect
that complete call stacks will be available during execution
reconstruction, as in bbr [12]).

2.3 Initializing Local Variables with Reaching
Definitions

The simple approach for constructing Sinit, as described
above, is imprecise. Specifically, the simple approach as-
signs each local variable a unique symbolic constant, xi,
effectively assuming that each local variable can start with
any initial value. This is often not the case. For example,
consider thread t1 in Figure 1. In this example, assuming
that RunA is the only caller of Foo, the value of local vari-
able a is known precisely. Even when the initial value of a
variable cannot be determined precisely, we can often define
its initial value as a symbolic function over other variables.

Our approach is to initialize Yinit using an interproce-
dural dataflow analysis that computes reaching definitions
for all local variables. We use a standard iterative dataflow
analysis framework with function summaries for scalabil-
ity, and we make the framework context-specific as follows:
First, we combine a static call graph with each function’s
control-flow graph to produce an interprocedural control-
flow graph, CFG. Then, we run a forwards dataflow analysis
over CFG that starts from main and summarizes all interpro-
cedural paths between program entry and the initial program
counter, γ0.

Our dataflow analysis computes assignments that must-
reach the initial program context. Specifically, we compute
a set of pairs Rlocal = {(ri, ei)}, where each ri is a local
variable in Yinit such that the assignment ri ← ei must-reach
the initial program context. That is, ri’s value at the initial
program context must match expression ei. We compute
Rlocal using standard flow functions for reaching definitions,
then assign each ei to ri in Yinit. Some variables may not
have a must-reach assignment—these variables, rk, do not
appear in Rlocal, and they are assigned a unique symbolic
constant xk in Yinit, as before.

As we compute Rlocal, each assignment r← e generates
a must-reach definition (r, eval(Rlocal, e)) on its outgoing
dataflow edge. Note that we use eval to reduce expressions.
Thus, given r1← r2+5, where (r2, x) ∈ Rlocal, we generate

the definition (r1, x+5) to express that r1 and r2 are func-
tions of the same value.

Must-Reach vs. May-Reach. Must-reach definitions
provide a sound over-approximation of Yinit, as any vari-
able not included in the must-reach set may have any initial
value. More precision could be achieved through may-reach
definitions; however, this would result in a symbolic state
with many large disjunctions that are expensive to solve in
current SMT solvers [25, 28].

3. Adding Pointers
Figure 4 shows the syntax of SimpHeaps, which adds point-
ers and dynamic memory allocation to Simp. As a conven-
tion, we use p to range over expressions that should evaluate
to pointers.

Memory Interface. We represent pointers as pairs
ptr(l, i), where l is the base address of a heap object and
i is a non-negative integer offset into that object. Pointers
may also be null. Pointer arithmetic is supported with the
ptradd(p, e) expression, which is evaluated as follows in
the concrete language:

eval(Y, p) = ptr(l, i) eval(Y, e) = i′

eval(Y, ptradd(p, e)) = ptr(l, i+ i′)

The heap is a mapping from locations to objects, and
each object includes a sequence of fields. Our notion of a
field encompasses the common notions of array elements
and structure fields. To simplify the semantics, we assume
that each field has a uniform size that is big enough to store
any value. Following that assumption, we define i to be the
offset of the (i+1)th field (making 0 the offset of the first
field), and we define the size of an object to be its number of
fields. Our implementation (§6) relaxes this assumption to
support variable-sized fields at byte-granular offsets. Heap
objects are allocated with malloc, which returns ptr(l, 0)
with a fresh location l, and they are deallocated with free.

Memory Errors. Out-of-bounds memory accesses,
uninitialized memory reads, and other memory errors have
undefined behavior in C [26]. We treat these as runtime er-
rors in our semantics to simplify the notions of soundness
and completeness of symbolic execution. The details of dy-
namic detectors for these errors are orthogonal to this paper
and are not discussed in detail.

Challenges. In the concrete language, load and store

statements always operate on values of the form ptr(l, i).
The symbolic semantics must consider three additional kinds
of pointer expressions: ptr(l, e), in which the offset e is
symbolic; and x and ptradd(x, e), in which the heap lo-
cation is symbolic as well.

3.1 Prior Work
A natural approach is to represent the symbolic heap as a
single mapping from addresses to values, then use the theory
of arrays [19] to reason about reads and writes over this

l ∈ Loc (heap locations)

v ∈ Value ::= ... | null | ptr(l, i)
e, p∈ Expr ::= ... | ptr(l, e) | ptradd(p, e)

s∈ Stmt ::= ... | r ← load p | store p, e
| r ← malloc(e) | free(p)

Figure 4. Syntax additions for SimpHeaps.

H : Loc→ {fields : (Expr→ Expr)}
A : List of {x : SymbolicConst, primary : Loc, n : PtrNode}

Figure 5. Symbolic state additions for SimpHeaps, includ-
ing a heap (H) and a list of aliasable objects (A).

mapping. This approach is common in work on program
verifiers [7, 11].

In contrast, some systems use a separate array for each
memory object. The authors of KLEE observed that symbolic
executors often send many small queries to the SMT solver,
e.g., to resolve branches, and these small queries can be re-
solved efficiently using caching [10]. This contrasts with
program verifiers, which summarize each program with a
single large expression that is sent to an SMT solver just
once. KLEE’s key insight is that, by assigning each memory
object its own array, symbolic memory expressions will nat-
urally avoid mentioning irrelevant parts of the heap, making
caching more effective.

Unfortunately, KLEE cannot efficiently resolve pointers
with symbolic heap locations (it instead focuses on cases
where only the offset is symbolic, as in ptr(l, x)). We de-
sire a semantics that assigns each object its own symbolic
array, to maintain the caching effectiveness of KLEE, but in
a way that enables efficient resolution of symbolic locations.
Our approach is a fusion of approaches from bbr [12] and
Dillig et al. [15]: both approaches use conditional aliasing
expressions to encode multiple concrete heap graphs into
a single symbolic state. However, bbr cannot reason about
symbolic offsets (like ptradd(x, y)) or memory allocations
of a symbolic size, and the approach from Dillig et al. is not
path-sensitive (so it must deal with approximation at control-
flow merge points) and it does not exploit the full power of
the theory of arrays. Our fused approach overcomes these
limitations, as summarized in the following subsection.

3.2 Symbolic Semantics
We now extend our symbolic execution algorithm for Sim-
pHeaps. As shown in Figure 5, we add two fields to the sym-
bolic state: a heap, H, which maps concrete locations to dy-
namically allocated heap objects, and a list A, which tracks
aliasing information that is used to resolve symbolic point-
ers. Key rules for the semantics described in this section are
given in Figure 6. The mem

==⇒ relation is used by step to evalu-
ate memory statements. (Note that memory operations never

fork execution in the absence of memory errors, and we elide
those error-checking details from this paper.)

Accessing Concrete Locations. We first consider ac-
cessing pointers of the form ptr(l, e). In this case, l uniquely
names the heap object being accessed, so we simply con-
struct an expression in the theory of arrays [19] to load from
or store to offset e of that object’s fields array.

Accessing Symbolic Locations. Now we consider ac-
cessing pointers of the form x and ptradd(x, e). This case
is more challenging since the pointer x may refer to an un-
known object. Following bbr [12], we assign each symbolic
pointer x a unique primary object in the heap, then use alias-
ing constraints to allow multiple pointers to refer to the same
object. This effectively encodes multiple concrete memory
graphs into a single symbolic heap. We allocate the primary
object for x lazily, the first time x is accessed. In this way, we
lazily expand the symbolic heap and are able to efficiently
encode heaps with unboundedly many objects.

Stores to x update x’s primary object, lx, and also con-
ditionally update all other objects that x may-alias. For ex-
ample, suppose pointers x and y may point to the same ob-
ject. To write value v to pointer x, we first update lx by
writing v to address ptr(lx, xoff), and we then update ly
by writing the expression (x = ptr(ly, xoff)) ? v : eold to ad-
dress ptr(ly, e), where eold is the previous value in ly (this
makes the update conditional) and xoff is a symbolic offset
that will be described shortly. Loads of x access ptr(lx, xoff)
directly—since stores update all aliases, it is unnecessary for
loads to access aliases as well.

Figure 6 shows the detailed semantics for accessing sym-
bolic pointers of the form ptradd(x, eoff) (we treat x as
ptradd(x, 0)).

Restricting Aliasing with a Points-To Analysis. Recall
that symbolic constants like x represent values that originate
in our initial program context. That is, if x is a valid pointer,
then x must point to some object that was allocated before
our initial program context. In the worst case, the set of
possible aliases includes all primary objects that have been
previously allocated for other symbolic pointers. This list of
objects is recorded in A (Figure 5) and kept up-to-date by
addPrimary.

In practice, we can narrow the set of aliases using a static
points-to analysis, as in [15]. On the first access to x, we add
the record {x, lx, nx} to A, where nx is the representative
node for x in the static points-to graph. The set of objects
that xmay-alias is found by enumerating all {y, ly, ny} ∈ A

for which ny and nx may point-to the same object according
to the static points-to graph—this search is performed by
lookupAliases. Note that, in practice, the search for aliases
can be implemented efficiently by exploiting the structure of
the underlying points-to graph.

We use a field-sensitive points-to analysis so we can ad-
ditionally constrain the offset being accessed. For each sym-
bolic pointer x, we query the points-to analysis to compute

Symbolic heap interface, including conditional put:

(l, {fields}) ∈ H read(fields, eoff) = e

heapGet(H, ptr(l, eoff)) = e

(l, {fields}) ∈ H read(fields, eoff) = eold eval = econd ? e : eold

write(fields, eoff, eval) = fields′ H′ = H[l 7→ {fields′}]
heapPut(H, ptr(l, eoff), econd, e) = H′

H;Y; C;A; Stmt mem
==⇒ H′;Y′; C′;A′

Load/store of a concrete location:

eval(Y, p) = ptr(l, eoff)
heapGet(H, ptr(l, eoff)) = e

H;Y; C;A; r ← load p
mem
==⇒ H;Y[r 7→ e]; C;A

eval(Y, p) = ptr(l, eoff) eval(Y, e) = e′

heapPut(H, ptr(l, eoff), true, e′) = H′

H;Y; C;A; store p, e
mem
==⇒ H′;Y; C;A

Load/store of a symbolic location:

eval(Y, p) = ptradd(x, eoff)
addPrimary(H,C,A, x) = (H′,C′,A′, ptr(lx, xoff))

heapGet(H′, ptr(lx, xoff + eoff)) = e

H;Y; C;A; r ← load p
mem
==⇒ H′;Y[r 7→ e]; C′;A′

eval(Y, p) = ptradd(x, eoff) eval(Y, e) = e′

addPrimary(H,C,A, x) = (H′,C′,A′, ptr(lx, xoff))
lookupAliases(A′, x) = {l1...ln}

heapPut(H′, ptr(lx, xoff + eoff),true, e′) = H′′0
heapPut(H′′0 , ptr(l1, xoff + eoff),(x = ptr(l1, xoff)),e

′) = H′′1
· · ·

heapPut(H′′n−1,ptr(ln, xoff + eoff),(x = ptr(ln, xoff)),e
′) = H′′n

H;Y; C;A; store p, e
mem
==⇒ H′′n;Y; C′;A′

Allocate and free:

l = fresh loc H′ = H[l 7→ {λi.undef}]
H;Y; C;A; r ← malloc(esize)

mem
==⇒ H′;Y[r 7→ ptr(l, 0)]; C;A

true

H;Y; C;A; free(p)
mem
==⇒ H;Y; C;A

Figure 6. Representative rules from the symbolic heap semantics. In these rules, Y refers to the current stack frame (namely,
the youngest stack frame in Y), and read(A, eoff) and write(A, eoff, eval) are standard constructors from the theory of arrays
(e.g., see [19]).

a range of possible offsets for x, and then construct a fresh
symbolic constant xoff that is constrained to that range. (This
is the same xoff used above in the discussion of loads and
stores.) For example, if x is known to point at a specific field,
then xoff is fixed to that field. If a range of offsets cannot be
soundly determined, xoff is left unconstrained.

Heap Invariants. On the first access of symbolic pointer
x, addPrimary allocates a primary object at lx, appends the
record {x, lx, nx} to A, and enforces a heap invariant that
we describe now.

Suppose the first access of x is a load, and suppose that
x may-alias some other symbolic pointer y. For soundness,
we must ensure that every load of x satisfies the following
invariant: x = y =⇒ load(x) = load(y). Making matters
more complicated is the fact that we may have performed
stores on y before our first access of x—we must ensure that
these stores are visible through x as well. Our approach is to
define the initial fields of lx as follows:

Initial fields of lx
≡ (x = ptr(ly, xoff)) ? fieldsy : fresh (1)

where fieldsy is the current fields array of object ly , which
is the primary object for y, and where fresh is a symbolic
array that maps each field fresh(i) to a fresh symbolic
constant—this represents the unknown initial values of lx
in the case that x and y do not alias. In general x may have
more than one alias, in which case we initialize the fields
of lx similarly to the above, but we use a chain of condition-
als that compares x with all possible aliases.

Memory Allocation. Semantics for malloc(esize) are
shown in Figure 6. Since each object has its own sym-
bolic fields array, we naturally support allocations of un-
bounded symbolic size.

Memory Error Checkers. Since this paper elides mem-
ory error-checking details, we treat free(p) as a no-op in
Figure 6.

Briefly, to detect memory errors, we might add size and
isLive attributes to each object in H. On malloc(e), we
would set size = e and isLive = true. On free(p), we
would conditionally free all objects that p may-alias by con-
ditionally setting isLive = false in all aliases, much in

the same way that store(p, e) conditionally writes e to
all aliases of p. Error checkers such as out-of-bounds and
use-after-free would then ensure that, for each access at
ptr(l, eoff), 0 ≤ eoff < H(l).size and H(l).isLive = true.

Compound Symbolic Pointer Expressions. Figure 6
shows rules for load and store statements where the pointer
p evaluates to an expression of the form ptr(l, e), x, or
ptradd(x, e), but the result of eval(Y, p) can also have the
form read(fields, eoff). This form appears when a pointer is
read from the heap, since all heap accesses use the theory of
arrays.

The difficulty is that there may be multiple possible val-
ues at eoff. For example, if fields is write(write(, 1, x), e′off, x

′),
then we cannot evaluate this address without first resolving
the symbolic pointers x and x′. Further, the values writ-
ten by write can contain conditional expressions due to the
conditional store performed by heapPut. So, in general, the
fields array might include a chain of calls as in the following:
write(write(, 1, x), e′off, e

′′ ? x′ : x′′).
Our approach is to walk the call chain of writes to build

guarded expressions that summarize the possible values at
offset eoff. If the value stored by a write is a conditional
expression, we also walk that conditional expression tree
while computing the guarded expressions. This gives each
guarded expression the form egrd → p, where each p has the
form x, ptradd(x, e), or ptr(l, e). In the above example,
we build guarded expressions (eoff = e′off ∧ e′′) → x′, and
(eoff = e′off ∧ ¬e′′) → x′′, and (eoff 6= e′off ∧ eoff = 1) → x,
and so on down the call chain.

We then execute the memory operation on this set of
guarded expressions. For stores, we evaluate each guarded
expression independently: given egrd → p, we evaluate p us-
ing the rules in Figure 6, but we include egrd in the condition
passed to heapPut. For loads, we use the rules in Figure 6 to
map each pair egrd → p to a pair egrd → e, where e is the
value loaded from pointer p. We then collect each egrd → e
into a conditional expression tree that represents the final
value of the load. Continuing the above example, if the val-
ues at x, x′, and x′′ are v, v′, and v′′, respectively, then a
load of the above example address would return the follow-
ing conditional expression tree: (eoff = e′off) ? (e′′ ? v′ : v′′) :
(eoff = 1 ? x :).

Function Pointers. At indirect calls, we first use a sound
static points-to analysis to enumerate a set of functions F
that might be called, then we use isSat to prune functions
from F that cannot be called given the current path con-
straint, and finally we fork for each of the remaining pos-
sibilities.

Example. Figure 7 demonstrates our heap semantics on
a simple program fragment that is shown in the left column.
For this example, we use an initial symbolic state in which
local variables rx, ry , and rz are assigned fresh symbolic
constants x, y, and z, respectively.

The second column shows the symbolic state after execut-
ing the store instruction. As we have not yet seen symbolic
pointer x, we construct a new primary heap object, lx, and
then add corresponding entries to both the heap (H) and the
aliasable objects list (A).

The third column shows the results of executing two
versions of the load instruction. In the first version, our static
points-to analysis determines that rx and ry never alias, so
we can simply add a new primary object ly to the heap. We
use a fresh symbolic constant (y0) to represent the unknown
initial contents at location ly .

In the second version, our points-to analysis concludes
that rx and ry may alias. Now, when constructing the new
object ly , we must ensure the following heap invariant: x =
y =⇒ load(y) = 5. We do this by conditionally initializ-
ing ly to the current value of lx when x = y (recall Equation
(1)). Hence, in this case, the final value of rz will be a con-
ditional expression, as shown in Figure 7.

3.3 Initializing the Heap with Reaching Definitions
The initial symbolic state (Sinit) actually contains an empty
heap that is expanded lazily, as described above. As the heap
graph expands, newly uncovered objects are initially uncon-
strained, as represented by the fresh symbolic array allocated
for each primary object (recall Equation (1), above). This
approach can be imprecise for the same reasons discussed
in §2.3. We improve precision using reaching definitions, as
follows.

We extend the reaching definition analysis from §2.3 to
also compute a set of heap writes that must-reach the initial
program context. Specifically, we compute a set of pairs
Rheap = {(pi, ei)}, where the heap location referenced by
pi must have a value matching ei in the initial state. We use
standard flow functions to computeRheap and we use a static
points-to analysis to reason about aliasing.

Then, we modify addPrimary to exploit Rheap. Specifi-
cally, when adding a primary object lx for symbolic pointer
x, we append the following invariant to the current path con-
straint, C:

∧
(ptradd(x,eoff),eval)∈Rheap

read(fresh, xoff + eoff) = eval

Above, we enumerate all pairs (p, eval) ∈ Rheap where
p has the form ptradd(x, eoff) or x (which we treat like
ptradd(x, 0)). For each such pair, we emit the constraint
fresh(xoff+eoff) = eval, where fresh is the initial symbolic
array for lx as shown in Equation (1).

4. Adding Threads and Synchronization
Figure 8 gives syntax for SimpThreads, which adds shared-
memory multithreading and synchronization to SimpHeaps.

Threads. SimpThreads supports cooperative thread schedul-
ing with yield(), which nondeterministically selects an-

Program fragment:
store rx, 5
rz ← load ry

Initial symbolic heap and stack:
H = {}
A = {}
Y = {rx 7→ x, ry 7→ y, rz 7→ z}

After the store:
H = {lx 7→ {5}}
A = {(x, lx,nx)}
Y = {rx 7→ x, ry 7→ y, rz 7→ z}

After the load (if x cannot alias y):
H = {lx 7→ {5}, ly 7→ {y0}}
A = {(x, lx, nx), (y, ly,ny)}
Y = {rx 7→ x, ry 7→ y, rz 7→ y0}

After the load (if x may alias y):
H = {lx 7→ {5}, ly 7→ {(x = y ?5 : y0)}}
A = {(x, lx, nx), (y, ly,ny)}
Y = {rx 7→ x, ry 7→ y, rz 7→ (x = y ?5 : y0)}

Figure 7. Example of our heap semantics on a simple program fragment. The local variables rx and ry are pointers to integers,
while rz is an integer. Bolded expressions denote updates at each step of execution.

other thread to run. Cooperative scheduling with yield is
sufficient to model any data race free program. As with other
memory errors (recall §3), data races have undefined be-
havior in C [6, 26] and are runtime errors in SimpThreads.
Hence, cooperative scheduling is a valid model as we can
assume that all SimpThreads programs are either data race
free or will halt before the first race.

New threads are created by threadCreate(ef, earg). This
spawns a new thread that executes the function call ef(earg),
and the new thread will run until ef returns. As SimpThreads
uses cooperative scheduling, the new thread is not scheduled
until another thread yields control.

Synchronization. We build higher-level synchroniza-
tion objects such as barriers, condition variables, and queued
locks using two primitive parts: cooperative scheduling with
yield, which provides simple atomicity guarantees, and
FIFO wait queues, which provide simple notify/wait op-
erations that are common across a variety of synchroniza-
tion patterns. Wait queues support three operations: wait, to
yield control and move the current thread onto a wait queue;
notifyOne, to wake the thread on the head of a wait queue;
and notifyAll, to wake all threads on a wait queue.

We use these building blocks to implement standard
threading and synchronization libraries such as POSIX
threads (pthreads). To aid our symbolic semantics, we
assume synchronization libraries have been instrumented
with the annotation functions listed in Figure 8. Anno-
tation functions are no-ops that do not actually perform
synchronization—they merely provide higher-level infor-
mation that we will exploit, as described later (§4.3, §4.4).
The example in Figure 9 demonstrates how to annotate an
implementation of pthreads’ mutexes. We have written the
example in a pseudocode that uses memory operations re-
sembling those in SimpThreads.

Note that wait queues are named by pointers. There is an
implicit wait queue associated with every memory address—
no initialization is necessary. For example, Figure 9 uses
the implicit wait queue associated with &m->taken. The
futex() system call in Linux uses a similar design. The
reason for naming wait queues by an address rather than an
integer id will become clear in §4.3.

s ∈ Stmt ::= ... | threadCreate(ef, earg) | yield()
| wait(p) | notifyOne(p) | notifyAll(p)

synchronization annotations
| acquire(p) | release(p)
| barrierInit(p, e) | barrierArrive(p)

Figure 8. New statements for SimpThreads.

pthread mutex lock(mutex *m) {

while (load ptradd(m, itaken)) // while (m->taken)

wait(ptradd(m, itaken)); // wait(&m->taken)

store ptradd(m, itaken) 1; // m->taken = 1

acquire(m); // acquire(m)

}

pthread mutex unlock(mutex *m) {

store ptradd(m, itaken) 0; // m->taken = 0

release(m); // release(m)

notifyOne(ptradd(m, itaken)); // notify(&m->taken)

yield(); // yield()

}

Figure 9. Pseudocode demonstrating how pthreads’ mu-
texes might be implemented in SimpThreads.

Challenges. The primary new challenge introduced by
SimpThreads is the need to reason about symbolic synchro-
nization objects. Our approach includes a semantics for sym-
bolic wait queues (§4.2) and a collection of synchronization-
specific invariants (§4.3) that exploit facts learned from our
context-specific dataflow analysis (§4.4).

4.1 Symbolic Semantics
We now extend our symbolic execution algorithm to support
SimpThreads. As illustrated in Figure 10, we modify Y and
CallCtx to include one call stack per thread, and we modify
path to record a multithreaded trace. We add the following
domains to the symbolic state:

• TCurr, which is the id of the thread that is currently exe-
cuting.
• TE, which is the set of enabled threads, i.e., the set of

threads not blocked on synchronization. This includes
TCurr.
• WQ, which is a list that represents a global order of all

waiting threads. Each entry of the list is a pair (p, t) sig-

Y : ThreadId→ Stack of (Var→ Expr) (local variables)
CallCtx : ThreadId→ Stack of StmtLabel (calling contexts)

path : List of (ThreadId, StmtLabel) (execution trace)

TCurr : ThreadId (current thread)
TE : Set of ThreadId (enabled threads)

WQ : List of (Expr, ThreadId) (global wait queue)
L+ : ThreadId→ Set of Expr (acquired locksets)

Bcnts : Expr→ Set of Expr (barrier arrival cnts)

Figure 10. Symbolic state for SimpThreads, with modifica-
tions to SimpHeaps bolded, above the line, and additions
shown below.

nifying that thread t is blocked on the wait queue named
by address p. The initial WQ can either be empty (all
threads enabled) or non-empty (some threads blocked, as
described in §4.2).
• L+, which describes a set of locks that may be held by

each thread and is derived from acquire and release

annotations.
• Bcnts, which describes a set of possible arrival counts for

each barrier and is derived from barrierInit annota-
tions.

L+ and Bcnts are both over-approximations. They are ini-
tialized as described in §4.4 and they are used by invariants
described in §4.3.

Symbolic Execution. Our first action during symbolic
execution is to invoke step(Sinit, yield()), where yield

forks execution once for each possible TCurr ∈ TE. This gives
each thread a chance to run first. Note that context switches
(updates to TCurr) occur only either explicitly through yield,
or implicitly when the current thread exits or is disabled
through wait. Note also that execution has deadlocked when
TE is empty and WQ is non-empty.

4.2 Symbolic Wait Queues
We now give symbolic semantics for the three FIFO wait
queue operations, wait, notifyOne, and notifyAll. When
a thread t calls wait(p), we remove t from TE and append
the pair (p, t) to WQ. When t is notified, we remove it from
WQ and add it to TE. Which threads are notified is answered
as follows:

notifyOne(p). Any thread in WQ with a matching queue
address may be notified. Let (p1, t1) be the first pair in WQ
and let (pn, tn) be the last pair. We walk this ordered list and
fork execution up to |WQ|+ 1 times. The possible execution
forks are given by the following list of path constraints:

(1) p1 = p
(2) p1 6= p ∧ p2 = p

...
(n) p1 6= p ∧ p2 6= p ∧ ... ∧ pn = p

(n+1) p1 6= p ∧ p2 6= p ∧ ... ∧ pn 6= p

In the first fork, we notify t1, in the second, we notify t2,

and so on, until the nth fork, in which we notify tn. In the
final fork, no threads are notified. Only a subset of these
forks may be feasible, so we use isSat to prune forked paths
that have an infeasible path constraint. In particular, if there
exists an i where pi=p must be true on the current path,
then all forks from (i+1) onwards are infeasible and will be
discarded. Further, as in §3, we increase precision by using
a static points-to analysis to determine when it cannot be
true that pi=p. These semantics are simple but reveal a key
design decision: by folding all concrete wait queues into a
single global queue, WQ, we naturally allow each wait queue
to be named by symbolic addresses.

notifyAll(p). Any subset of threads in WQ may be noti-
fied. We first compute the powerset of WQ,P(WQ), and then
fork execution once for each set S ∈ P(WQ). Specifically,
on the path that is forked for set S, we notify all threads in
S and apply the following path constraint:∧

(pi,ti)∈WQ

{
pi = p if (pi, ti) ∈ S
pi 6= p otherwise

This forks execution 2|WQ| ways, though we expect that isSat
and a points-to analysis will prune many of these in practice.

Initial Contexts with a Nonempty WQ. Suppose we
want to analyze an initial program context in which some
subset of threads begin in a waiting state, but we do not know
the order in which the threads began waiting. One approach
is to fork for each permutation of the wait order, but this is
inefficient. Instead, our approach is to add timestamp coun-
ters. First, we tag each waiting thread with a timestamp de-
rived from a global counter that is incremented on every call
to wait, so that thread t1 precedes thread t2 in WQ if and
only if t1’s timestamp is less than t2’s timestamp.

Then, we set up the program context so that each waiting
thread begins with the call to wait it is waiting in. Before be-
ginning normal symbolic execution, we execute these wait

calls in any order, using the semantics for wait described
above, but with one adjustment: we give each waiting thread
ti a symbolic timestamp, represented by the symbol xi, and
we bound each xi < 0 so these waits occur before other
calls to wait during normal execution. We say that xi < xk
is true in the concrete initial state when ti and tk are waiting
on the same queue and ti precedes tk on that queue.

Next, we update the semantics of notifyOne. If there are
n threads in WQ and w of those threads are initial waiters,
meaning they have symbolic timestamps, then notifyOne

uses the following sequence of path constraints, where
1 ≤ i ≤ w:

(i) pi = p ∧

(∧
1≤k≤w,k 6=i

(pk = p)⇒ (xi < xk)

)
(w+1) p1 6= p ∧ p2 6= p ∧ ... ∧ pw 6= p ∧ pw+1 = p

...
(n) p1 6= p ∧ p2 6= p ∧ ... ∧ pn = p

(n+1) p1 6= p ∧ p2 6= p ∧ ... ∧ pn 6= p

The first w constraints handle the cases where an initial
waiter is notified. We can notify initial waiter ti if it has a
matching queue address, pi=p, and it precedes all other ini-
tial waiters tk with a matching address. The cases for w+1
and above are as before.

4.3 Synchronization Invariants
The semantics described above are sound, but approxima-
tions in the initial state can cause symbolic execution to ex-
plore infeasible paths. In an attempt to avoid infeasible paths,
we augment the path constraint with higher-level program
invariants. Specifically, we propose a particularly high-value
set of synchronization invariants. We focus on synchroniza-
tion invariants here since the novelty of our work is symbolic
exploration of multithreaded programs with symbolic syn-
chronization. More generally, high-level invariants always
help reduce explosion of infeasible paths and we could eas-
ily integrate programmer-specified invariants.

We cannot apply synchronization invariants without first
identifying synchronization objects. Ideally we would lo-
cate such objects by scanning the heap, but our core lan-
guage is untyped, so we cannot soundly determine the type
of an object by looking at it. (This conservatively models
our target language, C, where potentially unsafe type casts
are prevalent.) Instead, we apply invariants when synchro-
nization functions are called. For example, we instrument
the implementation of pthread mutex lock(m) to apply
invariants to m as the first step before locking the mutex. The
rest of this section describes the invariants we have found
most useful.

Locks. As illustrated in Figure 9, locks can be modeled
by an object with a taken field that is non-zero when the
lock is held and zero when the lock is released. Suppose
a thread attempts to acquire a lock whose taken field is
symbolic: execution must fork into two paths, one in which
taken=0, so the lock can be acquired, and another in which
taken 6=0, so the thread must wait. One of these paths may
be infeasible, as illustrated by Figure 1, so we need to further
constrain lock objects to avoid such infeasible paths.

We use locksets to constrain the taken field of a lock
object. Given a symbolic state with locksets L+ and a pointer
p to some lock object, the lock’s taken field can be non-zero
only when there exists a thread T and an expression e, where
e ∈ L+(T), such that e = p. This invariant is expressed by
the following constraint, where ei ranges over all locks held
by all threads:

(taken = 0) ⇔

(∧
ei∈L+(∗)

ei 6= p

)
Our dataflow analysis computes L+ for the initial sym-

bolic state (§4.4). We keep L+ up-to-date during symbolic
execution using the acquire and release annotations: on
acquire(p) we add p to L+(TCurr), and on release(p) we
remove e from L+(TCurr) where e must-equal p on the cur-
rent path.

Barriers. A pthreads barrier can be modeled by two
fields, expected and arrived, and a wait queue, where
arrived is the number of threads that have arrived at the
barrier, the barrier triggers when arrived=expected, and
the wait queue is used to release threads when the barrier
triggers.

Suppose a program has N threads spin in a loop, where
each loop iteration includes a barrier with expected=N.
Now suppose we analyze the program from an initial con-
text where the barrier is unconstrained. When the first
thread arrives at the barrier, execution forks at the condition
arrived=expected. In the true branch we set arrived=0
and notify the queue, and in the false branch we increment
arrived and wait. This repeats for the other threads, and
an execution tree unfolds in which we explore O(2N) paths
through a code fragment that has exactly one feasible path.

We compute invariants for both of these fields. Bounds
for arrived can be determined by examining WQ: the num-
ber of threads that have arrived at a barrier is exactly the
number of threads that are waiting on the barrier’s wait
queue. Let q be the wait queue address used by the barrier
and let C be the current path constraint. We compute con-
servative lower- and upper-bounds for arrived. The lower-
bound L is the number of pairs (p, t) ∈ WQ for which
mustBeTrue(C, p=q), and the upper-bound H is the number
of pairs for which mayBeTrue(C, p=q). Given these bounds,
the invariant is L ≤ arrived ≤ H .

A barrier’s expected count is specified during barrier
initialization, i.e., when pthread barrier init is called.
Each symbolic state contains a Bcnts that maps barrier point-
ers p to a set of expressions that describes the set of possible
expected counts for all barriers pointed-to by p. So, we can
use Bcnts directly to construct an invariant for expected:

∧
p′∈Bcnts

(∨
e∈Bcnts(p′)

(p′ = p)⇒ (expected = e)

)

Bcnts is computed for the initial state (see §4.4) and does not
change during symbolic execution—when evaluating a call
to pthread barrier init during symbolic execution, we
write to the barrier’s expected field directly, making Bcnts

irrelevant for this case.
Other Types of Synchronization. The invariant de-

scribed above for a barrier’s arrived field is more generally
stated as an invariant on the size of a given wait queue, mak-
ing it applicable to other data structures that use wait queues,
such as condition variables and queued locks.

Why Wait Queues are Named by Address. For stan-
dard synchronization objects such as barriers, condition vari-
ables, and queued locks, different objects do not share the
same wait queue. For example, notifying the queue of lock
L should not notify threads waiting at any other lock. By us-
ing the address of L to name L’s wait queue, we state this
invariant implicitly.

For contrast, suppose we instead named wait queues by
an integer id. We would be forced to add a queueId field to
each lock, then state the following invariant: ∀p1, p2 : (p1 =
p2) ⇔ (id1 = id2), where p1 and p2 range over the set of
pointers to locks, and where id1 and id2 are the queueId

fields in p1 and p2, respectively. Stating this as an axiom
would require enumerating the complete set of pointers to
locks, which can be extremely inefficient.

4.4 Approximating the Initial State of Synchronization
We update the context-specific dataflow framework intro-
duced in §2.3 to support multiple threads. Specifically, we
apply the dataflow framework as described in §2.3 to each
thread, separately, and then combine the per-thread results
to produce a multithreaded analysis. We perform the follow-
ing analyses for SimpThreads:

Reaching Definitions. We update the reaching defini-
tions analysis described in §3.3 to support multiple threads.
Importantly, since we analyze each thread in isolation, we
must reason about cross-thread interference. Our approach
is to label memory locations in Rheap as either conflict-free
or shared. A location is conflict-free if it is provably thread-
local (via an escape analysis) or if all writes to the location
must-occur before the first call to threadCreate—the sec-
ond case captures a common idiom where the main thread
initializes global data that is kept read-only during parallel
execution. Shared locations may have conflicts—we reason
about these conflicts using interference-free regions [16].1

Locksets. We use a lockset analysis to compute L+(T),
the set of locks that may be held at thread T ’s initial pro-
gram counter. Our analysis uses relative locksets as in RE-
LAY [40]: each function summary includes two sets, L+f and
L−f , where L+f is the set of locks that function f may acquire
without releasing, and L−f is the set of locks that f always
releases without first acquiring.

The key difference between our implementation and RE-
LAY’s is that we compute may-be-held sets while RELAY
computes must-be-held sets. This reflects differing motiva-
tions: as a static race detector, RELAY wants to know which
locks must be held to determine if accesses are properly
guarded, but we want to know which locks may be held to
determine when two lock() calls may need to be serialized
(as motivated by Figure 1). Hence, our L+ and L− are may-
acquire and must-release, while those used by RELAY are
must-acquire and may-release.

Barrier Expected Arrivals. To compute Bcnts, we sim-
ply enumerate all calls to barrierInit(p, e) that might be
performed on some path from program entry up to the initial
context, and for each such call, we add e to the set Bcnts(p).
This can be viewed as may-reach analysis applied to each
barrier’s expected field.

1 A formal description of the full reaching definitions analysis is given in
the first author’s Ph.D. thesis [1].

Merging Thread-Local Analyses. Note that each of the
above three analyses is purely thread-local—we must merge
these analyses into a summarized initial program state.

For reaching definitions, the local variable definitions
(Rlocal) are trivially separate for each thread, so they can
be applied directly to the thread-local stacks as described in
§2.3. For the heap definitions, each thread-local analysis pro-
duces a set of definitions RT

heap, and all of these definitions
must be merged. As it turns out, we can simply union all
RT

heap into a single summarized Rheap. This follows from the
following observations: first, our dataflow analysis ignores
data races (recall the discussion in §1.1), and second, our
use of interference-free regions guarantees that no location
p will be defined in both RT1

heap and RT2
heap unless T1 = T2 or

there is a data race on p (see [16] for a proof).
For locksets, each thread-local analysis for thread T com-

putes L+(T), and each of these are trivially merged into L+.
Similarly, we construct a summarized barrier expected ar-
rivals (Bcnts) by taking the union of all BcntsT that were com-
puted by thread-local analyses.

Barrier Matching. A large class of data-parallel algo-
rithms use barriers to execute threads in lock-step. For ex-
ample, a program might execute the following loop in N dif-
ferent threads, where each iteration happens in lock-step:

for (i=0; i < Z; ++i) { barrierArrive(b); ... }

Suppose we are given an initial program context in which
each thread begins inside this loop. In this case, since the
loop runs in lock-step, we know that all threads must start
from the same dynamic loop iteration, so we can add a
constraint that equates the loop induction variable, i, across
all threads. This constraint is included in the initial path
constraint, Sinit.C.

This is the barrier matching problem: given two threads,
must they pass the same sequence of barriers from pro-
gram entry up to the initial context? Solutions have been
proposed—we adapt the algorithm from Zhang and Duester-
wald [43], which builds barrier expressions to describe
the possible sequence of barriers each thread might pass
through. Two threads are barrier-synchronized if their bar-
rier expressions are compatible.

Zhang and Duesterwald’s algorithm does not support our
use case directly because it cannot reason about loops with
input-dependent trip counts. So, we extend that algorithm
by computing a symbolic trip count for each loop node
in a barrier expression. Two loops match if their symbolic
trips counts must be equal. We compute trip counts using a
standard algorithm, but we discard trip counts that depend
on shared memory locations (recall the definition of shared,
from above). To determine if the trip count can be kept, we
compute a backwards slice of the trip count expression and
ensure that slice does not depend on any shared locations.

5. Soundness and Completeness
Our symbolic execution algorithm is sound, and it is com-
plete except when the SMT solver uses concretization to
make progress through an unsolvable query (recall §2.1). We
make this claim only for programs with a correctly imple-
mented pthreads library; otherwise, the invariants from §4.3
would be incorrect. Our theorem relies on a notion of corre-
spondence between concrete and symbolic states—because
the heap is expanded lazily in the symbolic semantics, this
notion relies on partial equivalence and is somewhat techni-
cal. We give the full concrete semantics, a full definition of
correspondence, and a proof of the theorem in an expanded
version of this paper [3]. Our proof applies to our symbolic
semantics only—it implicitly assumes that the initial sym-
bolic state is a correct over-approximation for the given pro-
gram context.

Definition 1 (Correspondence of concrete and symbolic
states). We say that symbolic state SS models concrete state
SK under constraint C if there exists an assignment Σ that
assigns all symbolic constants in SS to values such that (a)
Σ is a valid assignment under the constraint C, and (b) the
application of Σ to SS produces a state that is partially-
equivalent to SK (as defined in the expanded version of this
paper).

Theorem 1 (Soundness and completeness of symbolic exe-
cution). Consider an initial program context, an initial con-
crete state SK for that context, and an initial symbolic state
SS:

– Soundness: If symbolic execution from SS outputs a pair
(p,C), then for all SK such that SS models SK under C,
concrete execution from SK must follow path p as long
as context switches happen exactly as specified by path p.

– Completeness: If concrete execution from SK follows
path p, then for all SS such that SS models SK under
SS .C, symbolic execution from SS will either (a) output
a pair (p,C), for some C, or (b) encounter a query that
the SMT solver cannot solve.

6. Implementation
We implemented the above algorithms on top of the Cloud9 [9]
symbolic execution engine, which is in turn based on KLEE [10].
Cloud9 symbolically executes C programs that use pthreads
and are compiled to LLVM [30] bitcode (Cloud9 operates
directly on LLVM bitcode). Where a points-to analysis is
needed, we use DSA [29].

The C language allows casts between pointers and inte-
gers. This is not modeled in our semantics but is partially
supported by our implementation. Our approach is to repre-
sent each pointer expression p like any other integer expres-
sion. Then, at each memory access, we analyze p to extract
(base, offset) components. For example, our implementation
represents int *p = &a[x*3] as p = a + 4 · (x · 3), and to
access p we transform it to ptr(a, 12 ·x). We determine that

a is the base address by exploiting LLVM’s simple type sys-
tem to learn which terms are used as pointers.

The precise semantics of integer-to-pointer conversions
in C are implementation-defined (§6.3.2.3 of [26]). Our im-
plementation does not support programs that use integer
arithmetic to jump between two separately-allocated objects,
such as via the classic “XOR” trick for doubly-linked lists.
Such programs are not amenable to garbage collection for
analogous reasons [5], even though such programs are sup-
ported by some C implementations.

7. Evaluation
We ran our experiments on an 8-core 2.4GHz Intel Xeon
E5462 with 10GB of RAM. Although our testbed is multi-
core, Cloud9 is not designed to exploit multiple cores. We
ran one experiment at a time to minimize memory pres-
sure and other system effects that could add experimental
noise. We selected applications from standard multithreaded
benchmark suites [4, 41] to cover a range of parallelism
styles, including fork-join parallelism, barrier-synchronized
parallelism, task parallelism, and pipeline parallelism.

Evaluation: Infeasible Paths. Recall (§1.1) that our ap-
proach lies on a spectrum between a naı̈ve approach, which
approximates the initial state very conservatively by leav-
ing all memory locations unconstrained, and a fully precise
approach, which constructs a perfectly precise initial state
using an intractably expensive analysis.

We first compare the naı̈ve approach with our approach:
how many fewer infeasible paths do we explore? We answer
this question for a given program context C by exhaustively
enumerating all paths reachable from C up to a bounded
depth. Any path that is enumerated by the naı̈ve approach,
but not by our approach, must be an infeasible path that
our approach has avoided. We use a bounded depth to make
exhaustive exploration feasible.

Table 1 summarizes our results. Each row summarizes
experiments for a unique program context. For each bench-
mark application, we manually selected one or two program
contexts in which at least two threads begin execution from
the middle of a core loop. Column 2 shows the number of
threads used in each initial context, and Column 3 shows the
maximum number of conditional branches executed on each
path during bounded-depth exploration.

Columns 4 and 7 show the number of paths explored by
our fully optimized approach (Full) and the naı̈ve approach,
respectively. To further characterize our approach, we also
ran our approach with optimizations disabled: -RD disables
reaching definitions (§2.3, §3.3, §4.4) and -SI disables syn-
chronization invariants (§4.3, §4.4). Our approach explores
significantly fewer infeasible paths compared to the naı̈ve
approach, and a comparison across Columns 4–7 shows that
each optimization is essential.

It is difficult to compare our approach with the fully pre-
cise approach, as the fully precise approach is intractable.

Program Context Num Paths Avg IPS Exec Time in isSat inf.
thr br Full -RD -SI N WP Full -RD -SI N WP Full -RD -SI N pths

blackscholes 4 20 763 1087 765 1087 927 176 1171 178 1206 75% 93% 65% 93% 65% –
dedup-1 5 10 103 122 863 971 4731 72 49 67 64 3% 30% 62% 36% 51% –
dedup-2 5 12 458 550 1811 1904 4692 45 26 39 32 5% 35% 64% 30% 59% –
lu-1 4 22 681 1026 1133 1864 3997 93 170 64 107 2% 55% 16% 75% 57% 625
lu-2 4 18 554 1400 1290 4680 3860 80 136 105 162 32% 57% 23% 56% 26% 380
pfscan 3 18 246 246 3785 3785 6250 5368 5650 5254 5503 17% 28% 25% 15% 13% –
streamcluster 3 11 60 617 229 1004 5382 161 59 7 19 15% 9% 35% 74% 31% 48

Table 1. Results for manually-selected program contexts. Full is our fully optimized approach, and N is the naı̈ve approach.

For lu and streamcluster, we have manually inspected
the paths explored by our approach (Column 4) and es-
timated, through our best understanding of the code, how
many of those paths are infeasible (Column 18). Sources of
infeasible paths include the following: Both programs assign
each thread a unique id parameter (e.g., by incrementing a
global counter), but we are unable prove that these ids are
unique across threads. We suspect that a similar situation
causes infeasible paths in other applications, but we have not
quantified this precisely. Further, they performs calls of the
form pthread join(t[i])—we are unable to prove that
each t[i] is a valid thread id, so we must fork for (infeasi-
ble) error cases.

Evaluation: Performance. Columns 8–12 show the av-
erage number of LLVM instructions executed per second
(IPS), and Columns 13–17 show the percentage of total exe-
cution time devoted to isSat. The two metrics are correlated,
as slower isSat times lead to lower IPS. Full uses more pre-
cise constraints than the naı̈ve approach, but this does not
necessarily lead to higher IPS for Full. Namely, precise and
simple constraints such as x = 5 lead to high IPS, but pre-
cise and complex constraints can lead to low IPS—the latter
effect has been observed previously [25, 28].

To further understand the overheads of our approach, we
symbolically executed multiple whole program paths that
each begin at program entry and pass through the initial con-
text (WP in Columns 8 and 13). Although Full can be an
order-of-magnitude slower than WP, many paths explored by
WP visit 100s of branches before reaching the initial context,
suggesting that exhaustive summarization of all paths from
program entry is infeasible—approximating the initial con-
text is necessary. Further profiling shows that much of our
overhead comes from resolving symbolic pointers: LLVM’s
load and store instructions typically comprised 15% to
50% of total execution time in Full, but < 5% in WP.

Lastly, we tried disabling our use of a points-to analysis
to restrict aliasing (§3.2, §4.2). With this optimization dis-
abled, each symbolic pointer was assigned 100s of aliases,
leading to large heap-update expressions and poor solver
performance—so slow that on most benchmarks, throughput
decreased to well under 5 IPS. Hence, we consider this opti-
mization so vital that we left it enabled in all experiments.

Evaluation: Input-Covering Schedules. We evaluate
how well our techniques support an algorithm for finding
input-covering schedules [2]. The algorithm partitions ex-
ecution into epochs of bounded length and uses symbolic
execution to enumerate a set of input-covering schedules
for each epoch. The beginning of each epoch is defined by
a multithreaded program context with fully specified call
stacks, so our techniques are directly applicable.

We ran the algorithm (from [2]) on the programs shown
in the table below, using our approach at various optimiza-
tion levels, along with the naı̈ve approach. We report the
number of schedules enumerated by that algorithm and the
algorithm’s total runtime. Similarly to the infeasible paths
evaluation above, if a schedule is enumerated with the naı̈ve
approach, but not our approach, then it must be an infeasi-
ble schedule. The results show, again, that our techniques are
essential: the naı̈ve approach suffers from slower algorithm
runtimes and more infeasible schedules.

Program NumSchedules / RunningTime
thr Full -RD -SI N

fft 2 2/ 9s 2/12s 2/ 10s 2/ 11s
lu 4 3/ 6s 23/14s 1550/396s 1976/202s
pfscan 2 455/24s 455/28s 2245/ 78s 2273/ 80s

8. Related Work
We have discussed related work throughout the paper. We
stress that prior approaches to path explosion, such as sum-
marization [20, 24, 36], heuristics [8, 31, 34], path merg-
ing [25, 28], and partial order reductions [14, 18], are com-
pletely orthogonal to our symbolic execution semantics and
could be profitably incorporated along with our ideas. We
believe our integration of dataflow analysis with symbolic
execution is novel, and §7 shows that our choice of analysis
represents an essential sweet spot in our context. However,
we do not claim that our dataflow analysis is powerful in
a novel way. We refer to Rinard for a thorough survey of
dataflow analysis of multithreaded programs [37].

The recently proposed idea of micro execution [21] has
a similar goal to our work—“virtual” execution (which in-
cludes symbolic execution) from arbitrary program contexts—
but the MicroX system does not reason as precisely about
the symbolic heap, and most importantly, it does not con-

sider the effect of the surrounding program context (making
it equivalent to the naı̈ve approach we compare with in §7).

Some additional prior work (not yet discussed) has inves-
tigated symbolic pointers. Otter [32] appears to use a similar
conditional-aliasing approach with lazy initialization, but its
approach is not explained formally. SAGE [17] soundly han-
dles interior pointers, similarly to our semantics, but does
not support symbolic object sizes or symbolic base loca-
tions. CUTE [38] symbolically executes C unit tests and sup-
ports symbolic pointer inputs, but it can reason about only
those aliasing relationships that are explicitly stated in pro-
gram branches, such as if(p1!=p2). Pex [39] exploits static
types (not available to us) and cannot reason soundly when
type casts are involved (our approach is sound on an untyped
language). We originally implemented the algorithm from
Khurshid et al. [27], which explores each possible memory
graph via aggressive forking, but this suffered from unac-
ceptably extreme path explosion.

Table 2 gives a brief comparison of our approach as
compared to the most related prior approaches.

9. Conclusions
We proposed the “symbolic execution from arbitrary con-
texts” problem and described a solution. In solving this prob-
lem, we found it profitable to integrate dataflow analyses
with symbolic execution. Specifically, our evaluation in §7
showed that two classes of dataflow analyses are particu-
larly profitable: reaching definitions, to summarize the state
of memory in a general way, and locksets and barrier match-
ing, to summarize the state of synchronization objects in a
specific way. In broader terms, we believe that practical so-
lutions to this problem must construct the initial symbolic
state using a scalable analysis of some sort, and we have
shown that scalable dataflow analyses can be a good fit.

Our solution gains scalability at the cost of precision. We
believe this trade-off is necessary, as constructing a fully-
precise summary of the initial context would be prohibitively
expensive. Hence, unlike classic approaches to symbolic ex-
ecution, which are fully precise because they explore feasi-
ble paths only, our approach is imprecise and can explore
infeasible paths—this can lead to false positives in verifica-
tion tools, testing tools, and other analyses that build on our
symbolic execution techniques.

Acknowledgements
We thank the anonymous reviewers for their valuable com-
ments. We also thank the members of the Sampa and PLSE
groups at UW for their feedback and fruitful discussions.
This work was supported in part by the National Science
Foundation CAREER award 0846004, a Google Ph.D. Fel-
lowship awarded to Tom Bergan, and a gift from Microsoft.

References
[1] T. Bergan. Avoiding State-Space Explosion in Multithreaded

Programs with Input-Covering Schedules and Symbolic Exe-
cution. PhD thesis, Computer Science Dept., University of
Washington, Seattle, WA, March 2014.

[2] T. Bergan, L. Ceze, and D. Grossman. Input-Covering Sched-
ules for Multithreaded Programs. In OOPSLA, 2013.

[3] T. Bergan, D. Grossman, and L. Ceze. Symbolic Execution
of Multithreaded Programs from Arbitrary Program Contexts.
Technical Report UW-CSE-13-08-01, Univ. of Washington.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural Impli-
cations. In PACT, 2008.

[5] H.-J. Boehm. Simple Garbage-Collector-Safety. In PLDI,
1996.

[6] H.-J. Boehm and S. Adve. Foundations of the C++ Concur-
rency Memory Model. In PLDI, 2008.

[7] S. Böhme and M. Moskal. Heaps and Data Structures: A
Challenge for Automated Provers. In Proceedings of the 23rd
International Conference on Automated Deduction, 2011.

[8] P. Boonstoppel, C. Cadar, and D. Engler. RWset: Attack-
ing Path Explosion in Constraint-Based Test Generation. In
TACAS, 2008.

[9] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel Sym-
bolic Execution for Automated Real-World Software Testing.
In EuroSys, 2011.

[10] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex
Systems Programs. In OSDI, 2008.

[11] S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamaric. A
Reachability Predicate for Analyzing Low-Level Software. In
TACAS, 2007.

[12] A. Cheung, A. Solar-Lezama, and S. Madden. Partial Replay
of Long-Running Applications. In FSE, 2011.

[13] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A Platform
for In Vivo Multi-Path Analysis of Software Systems. In
ASPLOS, 2011.

[14] K. E. Coons, M. Musuvathi, and K. S. McKinley. Bounded
Partial-Order Reduction. In OOPSLA, 2013.

[15] I. Dillig, T. Dillig, A. Aiken, and M. Sagiv. Precise and Com-
pact Modular Procedure Summaries for Heap Manipulating
Programs. In PLDI, 2011.

[16] L. Effinger-Dean, H.-J. Boehm, P. Joisha, and D. Chakrabarti.
Extended Sequential Reasoning for Data-Race-Free Pro-
grams. In Workshop on Memory Systems Performance and
Correctness, 2011.

[17] B. Elkarablieh, P. Godefroid, and M. Y. Levin. Precise Pointer
Reasoning for Dynamic Test Generation. In ISSTA, 2009.

[18] C. Flanagan and P. Godefroid. Dynamic Partial-Order Reduc-
tion for Model Checking Software. In POPL, 2005.

[19] V. Ganesh and D. L. Dill. A Decision Procedure for Bit-
vectors and Arrays. In CAV, 2007.

[20] P. Godefroid. Compositional Dynamic Test Generation. In
POPL, 2007.

[21] P. Godefroid. Micro Execution. In ICSE, 2014.
[22] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed

Automated Random Testing. In PLDI, 2005.

Can start from the Supports Supports symbolic ptrs?
System middle of execution? multithread programs? base offset
KLEE [10] no no yes (slow) yes
Cloud9 [9] no yes yes (slow) yes
Otter [32] yes (naı̈ve) no yes yes
bbr [12] yes (naı̈ve) no yes yes
MicroX [21] yes (naı̈ve) yes no yes
This paper yes (dataflow) yes yes yes

Table 2. Comparison with a few key related symbolic execution tools. For yes answers in the second column, we also
summarize (in parentheses) the method used to compute the initial symbolic state. In the last two columns, we summarize
how well each system supports symbolic base and offset components of a symbolic pointer.

[23] P. Godefroid, M. Y. Levin, and D. Molnar. Automated White-
box Fuzz Testing. In Network and Distributed System Security
Symposium, 2008.

[24] P. Godefroid and D. Luchaup. Automatic Partial Loop Sum-
marization in Dynamic Test Generation. In ISSTA, 2011.

[25] T. Hansen, P. Schachte, and H. Sondergaard. State Joining
and Splitting for the Symbolic Execution of Binaries. In Intl.
Conf. on Runtime Verification (RV), 2009.

[26] ISO. C Language Standard, ISO/IEC 9899:2011. 2011.
[27] S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized

Symbolic Execution for Model Checking and Testing. In
TACAS, 2003.

[28] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient
State Merging in Symbolic Execution. In PLDI, 2012.

[29] C. Lattner. Macroscopic Data Structure Analysis and Opti-
mization. PhD thesis, Computer Science Dept., University of
Illinois at Urbana-Champaign, Urbana, IL, May 2005.

[30] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis and Transformation. In CGO,
2004.

[31] Y. Li, Z. Su, L. Wang, and X. Li. Steering Symbolic Execution
to Less Traveled Paths. In OOPSLA, 2013.

[32] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks. Analysis of
Multithreaded Programs. In Static Analysis Symposium (SAS),
2011.

[33] L. D. Moura and N. Bjrner. Z3: An Efficient SMT Solver. In
TACAS, 2008.

[34] M. Musuvathi and S. Qadeer. Iterative Context Bounding
for Systematic Testing of Multithreaded Programs. In PLDI,
2007.

[35] C. S. Pasareanu, N. Rungta, and W. Visser. Symbolic Execu-
tion with Mixed Concrete-Symbolic Solving. In ISSTA, 2011.

[36] S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizing Pro-
cedures in Concurrent Programs. In POPL, 2004.

[37] M. Rinard. Analysis of Multithreaded Programs. In Static
Analysis Symposium (SAS), 2001.

[38] K. Sen, D. Marinov, and G. Agha. CUTE: a Concolic Unit
Testing Engine for C. In FSE, 2005.

[39] N. Tillmann and J. de Halleux. Pex - White Box Test Genera-
tion for .NET. In Tests and Proofs (TAP), 2008.

[40] J. Voung, R. Jhala, and S. Lerner. RELAY: Static Race Detec-
tion on Millions of Lines of Code. In FSE, 2007.

[41] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. In ISCA, 1995.

[42] C. Zamfir, B. Kasikci, J. Kinder, E. Bugnion, and G. Candea.
Automated Debugging for Arbitrarily Long Executions. In
HotOS, 2013.

[43] Y. Zhang and E. Duesterwald. Barrier Matching for Programs
With Textually Unaligned Barriers. In PPoPP, 2007.

