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Abstract—Many applications that can take advantage of
accelerators are amenable to approximate execution. Past work
has shown that neural acceleration is a viable way to accelerate
approximate code. In light of the growing availability of on-chip
field-programmable gate arrays (FPGAs), this paper explores
neural acceleration on off-the-shelf programmable SoCs.

We describe the design and implementation of SNNAP, a flex-
ible FPGA-based neural accelerator for approximate programs.
SNNAP is designed to work with a compiler workflow that
configures the neural network’s topology and weights instead
of the programmable logic of the FPGA itself. This approach
enables effective use of neural acceleration in commercially
available devices and accelerates different applications without
costly FPGA reconfigurations. No hardware expertise is required
to accelerate software with SNNAP, so the effort required can be
substantially lower than custom hardware design for an FPGA
fabric and possibly even lower than current “C-to-gates” high-
level synthesis (HLS) tools. Our measurements on a Xilinx Zynq
FPGA show that SNNAP yields a geometric mean of 3.8× speedup
(as high as 38.1×) and 2.8× energy savings (as high as 28×) with
less than 10% quality loss across all applications but one. We
also compare SNNAP with designs generated by commercial HLS
tools and show that SNNAP has similar performance overall, with
better resource-normalized throughput on 4 out of 7 benchmarks.

I. INTRODUCTION

In light of diminishing returns from technology improve-
ments on performance and energy efficiency [20], [28], re-
searchers are exploring new avenues in computer architecture.
There are at least two clear trends emerging. One is the use of
specialized logic in the form of accelerators [52], [53], [24],
[27] or programmable logic [40], [39], [13], and another is
approximate computing, which exploits applications’ tolerance
to quality degradations [44], [51], [21], [43]. Specialization
leads to better efficiency by trading off flexibility for leaner
logic and hardware resources, while approximate computing
trades off accuracy to enable novel optimizations.

The confluence of these two trends leads to additional
opportunities to improve efficiency. One example is neural
acceleration, which trains neural networks to mimic regions
of approximate code [22], [48]. Once the neural network
is trained, the system no longer executes the original code
and instead invokes the neural network model on a neural
processing unit (NPU) accelerator. This leads to better ef-
ficiency because neural networks are amenable to efficient
hardware implementations [38], [19], [32], [45]. Prior work
on neural acceleration, however, has assumed that the NPU is
implemented in fully custom logic tightly integrated with the
host processor pipeline [22], [48]. While modifying the CPU

core to integrate the NPU yields significant performance and
efficiency gains, it prevents near-term adoption and increases
design cost/complexity. This paper explores the performance
opportunity of NPU acceleration implemented on off-the-shelf
field-programmable gate arrays (FPGAs) and without tight
NPU–core integration, avoiding changes to the processor ISA
and microarchitecture.

On-chip FPGAs have the potential to unlock order-of-
magnitude energy efficiency gains while retaining some of the
flexibility of general-purpose hardware [47]. Commercial parts
that incorporate general purpose cores with programmable logic
are beginning to appear [54], [2], [31]. In light of this trend,
this paper explores an opportunity to accelerate approximate
programs via an NPU implemented in programmable logic.

Our design, called SNNAP (systolic neural network
accelerator in programmable logic), is designed to work with a
compiler workflow that automatically configures the neural net-
work’s topology and weights instead of the programmable logic
itself. SNNAP’s implementation on off-the-shelf programmable
logic has several benefits. First, it enables effective use of
neural acceleration in commercially available devices. Second,
since NPUs can accelerate a wide range of computations,
SNNAP can target many different applications without costly
FPGA reconfigurations. Finally, the expertise required to use
SNNAP can be substantially lower than designing custom FPGA
configurations. In our evaluation, we find that the programmer
effort can even be lower than for commercially available “C-
to-gates” high-level synthesis tools [42], [18].

We implement and measure SNNAP on the Zynq [54], a
state-of-the-art programmable system-on-a-chip (PSoC). We
identify two core challenges: communication latency between
the core and the programmable logic unit, and the difference
in processing speeds between the programmable logic and the
core. We address those challenges with a new throughput-
oriented interface and programming model, and a parallel
architecture based on scalable FPGA-optimized systolic arrays.
To ground our comparison, we compare benchmarks accelerated
with SNNAP to custom designs of the same accelerated code
generated by a high-level synthesis tool. Our HLS study shows
that current commercial tools still require significant effort and
hardware design experience. Across a suite of approximate
benchmarks, we observe an average speedup of 3.8×, ranging
from 1.3× to 38.1×, and an average energy savings of 2.8×.

II. PROGRAMMING

There are two basic ways to use SNNAP. The first is to use a
high-level, compiler-assisted mechanism that transforms regions
of approximate code to offload them to SNNAP. This automated



neural acceleration approach requires low programmer effort
and is appropriate for bringing efficiency to existing code.
The second is to directly use SNNAP’s low-level, explicit
interface that offers fine-grained control for expert programmers
while still abstracting away hardware details. We describe both
interfaces below.

A. Compiler-Assisted Neural Acceleration

Approximate applications can take advantage of SNNAP
automatically using the neural algorithmic transformation [22].
This technique uses a compiler to replace error-tolerant sub-
computations in a larger application with neural network
invocations.

The process begins with an approximation-aware pro-
gramming language in which code or data can be marked
as approximable. Language options include Relax’s code
regions [17], EnerJ’s type qualifiers [44], Rely’s variable and
operator annotations [9], or simple function annotations. In any
case, the programmer’s job is to express where approximation
is allowed. The neural-acceleration compiler trains neural
networks for the indicated regions of approximate code using
test inputs. The compiler then replaces the original code with
an invocation of the learned neural network. Lastly, quality
can be monitored at run-time using application-specific quality
metrics such as Light-Weight Checks [26].

As an example, consider a program that filters each pixel
in an image. The annotated code might resemble:

APPROX_FUNC double filter(double pixel);
...
for (int x = 0; x < width; ++x)
for (int y = 0; y < height; ++y)
out_image[x][y] = filter(in_image[x][y]);

where the programmer uses a function attribute to mark
filter() as approximate.

The neural-acceleration compiler replaces the filter()
call with instructions that instead invoke SNNAP with the
argument in_image[x][y]. The compiler also adds setup
code early in the program to set up the neural network for
invocation.

B. Low-Level Interface

While automatic transformation represents the highest-level
interface to SNNAP, it is built on a lower-level interface
that acts both as a compiler target and as an API for expert
programmers. This section details the instruction-level interface
to SNNAP and a low-level library layered on top of it that
makes its asynchrony explicit.

Unlike a low-latency circuit that can be tightly integrated
with a processor pipeline, FPGA-based accelerators cannot
afford to block program execution to compute each individual
input. Instead, we architect SNNAP to operate efficiently on
batches of inputs. The software groups together invocations of
the neural network and ships them all simultaneously to the
FPGA for pipelined processing. In this sense, SNNAP behaves
as a throughput-oriented accelerator: it is most effective when
the program keeps it busy with a large number of invocations
rather than when each individual invocation must complete
quickly.

Instruction-level interface. At the lowest level, the program
invokes SNNAP by enqueueing batches of inputs, invoking
the accelerator, and receiving a notification when the batch is
complete. Specifically, the program writes all the inputs into
a buffer in memory and uses the ARMv7 SEV (send event)
instruction to notify SNNAP. The accelerator then reads the
inputs from the CPU’s cache via a cache-coherent interface
and processes them, placing the output into another buffer.
Meanwhile, the program issues an ARM WFE (wait for event)
instruction to sleep until the neural-network processing is done
and then reads the outputs.

Low-Level asynchronous API. SNNAP’s accompanying software
library offers a low-level API that abstracts away the details of
the hardware-level interface. The library provides an ordered,
asynchronous API that hides the size of SNNAP’s input and
output buffers. This interface is useful both as a target for
neural-acceleration compilers and for expert programmers who
want convenient, low-level control over SNNAP.

The SNNAP C library uses a callback function to consume
each output of the accelerator when it is ready. For example, a
simple callback that writes a single floating-point output to an
array can be written:

static int index = 0;
static float output[...];
void cbk(const void *data) {

output[index] = *(float *)data; ++index;
}

Then, to invoke the accelerator, the program configures the
library, sends inputs repeatedly, and then waits until all
invocations are finished with a barrier. For example:

snnap_stream_t stream = snnap_stream_new(
sizeof(float), sizeof(float), cbk);

for (int i = 0; i < max; ++i) {
snnap_stream_put(stream, input);

}
snnap_stream_barrier(stream);

The snnap_stream_new call creates a stream configuration
describing the size the neural network’s invocation in bytes, the
size of each corresponding output, and the callback function.
Then, snnap_stream_put copies an input value from a void*
pointer into SNNAP’s memory-mapped input buffer. Inside the
put call, the library also consumes any outputs available in
SNNAP’s output buffer and invokes the callback function if
necessary. Finally, snnap_stream_barrier waits until all
invocations are finished.

This asynchronous style enables the SNNAP runtime
library to coalesce batches of inputs without exposing buffer
management to the programmer or the compiler. The under-
lying SNNAP configuration can be customized with different
buffer sizes without requiring changes to the code. In more
sophisticated programs, this style also allows the program
to transparently overlap SNNAP invocations with CPU code
between snnap_stream_send calls.

This low-level, asynchronous interface is suitable for expert
programmers who want to exert fine-grained control over how
the program communicates with SNNAP. It is also appropriate
for situations when the program explicitly uses a neural network
model for a traditional purpose, such as image classification or
handwriting recognition, where the SNNAP C library acts as
a replacement for a software neural network library. In most
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Fig. 1: SNNAP system diagram. Each Processing Unit (PU)
contains a chain of Processing Elements (PE) feeding into a
sigmoid unit (SIG).

cases, however, programmers need not directly interact with the
library and can instead rely on automatic neural acceleration.

III. ARCHITECTURE DESIGN FOR SNNAP

This work is built upon an emerging class of heterogeneous
computing devices called Programmable System-on-Chips
(PSoCs). These devices combine a set of hard processor
cores with programmable logic on the same die. Compared
to conventional FPGAs, this integration provides a higher-
bandwidth and lower-latency interface between the main CPU
and the programmable logic. However, the latency is still higher
than in previous proposals for neural acceleration [22], [48]. Our
objective is to take advantage of the processor–logic integration
with efficient invocations, latency mitigation, and low resource
utilization. We focus on these challenges:

• The NPU must use FPGA resources efficiently to
minimize its energy consumption.

• The NPU must support low-latency invocations to
provide benefit to code with small approximate regions.

• To mitigate communication latency, the NPU must be
able to efficiently process batches of invocations.

• The NPU and the processor must operate independently
to enable the processor to hibernate and conserve
energy while the accelerator is active.

• Different applications require different neural network
topologies. Thus, the NPU must be reconfigurable to
support a wide range of applications without the need
for reprogramming the entire FPGA or redesigning the
accelerator.

The rest of this section provides an overview of the SNNAP
NPU and its interface with the processor.

A. SNNAP Design Overview

SNNAP evaluates multi-layer perceptron (MLP) neural
networks. MLPs are a widely-used class of neural networks that
have been used in previous work on neural acceleration [22],

[48]. An MLP is a layered directed graph where the nodes are
computational elements called neurons. Each neuron computes
the weighted sum of its inputs and applies a nonlinear function,
known as the activation function, to the sum—often a sigmoid
function. The complexity of a neural network is reflected in
its topology: larger topologies can fit more complex functions
while smaller topologies are faster to evaluate.

The SNNAP design is based on systolic arrays. Systolic
arrays excel at exploiting the regular data-parallelism found in
neural networks [14] and are amenable to efficient implemen-
tation on modern FPGAs. Most of the systolic array’s highly
pipelined computational datapath can be contained within the
dedicated multiply–add units found in FPGAs know as Digital
Signal Processing (DSP) slices. We leverage these resources
to realize an efficient pipelined systolic array for SNNAP in
the programmable logic.

Our design, shown in Figure 1, consists of a cluster of
Processing Units (PUs) connected through a bus. Each PU is
composed of a control block, a chain of Processing Elements
(PEs), and a sigmoid unit, denoted by the SIG block. The
PEs form a one-dimensional systolic array that feeds into the
sigmoid unit. When evaluating a layer of a neural network,
PEs read the neuron weights from a local scratchpad memory
where temporary results can also be stored. The sigmoid unit
implements a nonlinear neuron-activation function using a
lookup table. The PU control block contains a configurable
sequencer that orchestrates communication between the PEs
and the sigmoid unit. The PUs operate independently, so
different PUs can be individually programmed to parallelize
the invocations of a single neural network or to evaluate many
different neural networks. Section IV details SNNAP’s hardware
design.

B. CPU–SNNAP Interface

We design the CPU–SNNAP interface to allow dynamic
reconfiguration, minimize communication latency, and provide
high-bandwidth coherent data transfers. To this end, we design
a wrapper that composes three different interfaces on the target
programmable SoC (PSoC).

We implement SNNAP on a commercially available PSoC:
the Xilinx Zynq-7020 on the ZC702 evaluation platform [54].
The Zynq includes a Dual Core ARM Cortex-A9, an FPGA
fabric, a DRAM controller, and a 256 KB scratchpad SRAM
referred to as the on-chip memory (OCM). While PSoCs like
the Zynq hold the promise of low-latency, high-bandwidth
communication between the CPU and FPGA, the reality is
more complicated. Zynq provides multiple communication
mechanisms with different bandwidths and latencies that can
surpass 100 CPU cycles. This latency can in some cases
dominate the time it takes to evaluate a neural network.
SNNAP’s interface must therefore mitigate this communication
cost with a modular design that permits throughput-oriented,
asynchronous neural-network invocations while keeping latency
as low as possible.

We compose a communication interface based on three
available communication mechanisms on the Zynq PSoC [57].
First, when the program starts, it configures SNNAP using the
medium-throughput General Purpose I/Os (GPIOs) interface.
Then, to use SNNAP during execution, the program sends



inputs using the high-throughput ARM Accelerator Coherency
Port (ACP). The processor then uses the ARMv7 SEV/WFE
signaling instructions to invoke SNNAP and enter sleep mode.
The accelerator writes outputs back to the processor’s cache
via the ACP interface and, when finished, signals the processor
to wake up. We detail each of these components below.

Configuration via General Purpose I/Os (GPIOs). The ARM
interconnect includes two 32-bit Advanced Extensible Interface
(AXI) general-purpose bus interfaces to the programmable logic,
which can be used to implement memory-mapped registers or
support DMA transfers. These interfaces are easy to use and
are relatively low-latency (114 CPU cycle roundtrip latency)
but can only support moderate bandwidth. We use these GPIO
interfaces to configure SNNAP after it is synthesized on the
programmable logic. The program sends a configuration to
SNNAP without reprogramming the FPGA. A configuration
consists of a schedule derived from the neural network topology
and a set of weights derived from prior neural network training.
SNNAP exposes the configuration storage to the compiler as
a set of memory-mapped registers. To configure SNNAP, the
software checks that the accelerator is idle and writes the
schedule, weights, and parameters to memory-mapped SRAM
tables in the FPGA known as block RAMs.

Sending data via the Accelerator Coherency Port. The FPGA
can access the ARM on-chip memory system through the 64-
bit Accelerator Coherency Port (ACP) AXI-slave interface.
This port allows the FPGA to send read and write requests
directly to the processors’ Snoop Control Unit to access the
processor caches thus bypassing explicit cache flushes required
by traditional DMA interfaces. The ACP interface is the best
available option for transferring batches of input/output vectors
to and from SNNAP. SNNAP includes a custom AXI master for
the ACP interface, reducing round-trip communication latency
down to 93 CPU cycles. Batching invocations help amortize
this latency in practice.

Invocation via synchronization instructions. The ARM and
the FPGA are connected by two unidirectional event lines
eventi and evento for synchronization. The ARMv7 ISA
contains two instructions to access these synchronization signals,
SEV and WFE. The SEV instruction causes the evento signal
in the FPGA fabric to toggle. The WFE instruction causes
the processor to enter the low-power hibernation state until
the FPGA toggles the eventi signal. These operations have
significantly lower latency (5 CPU cycles) than any of the other
two communication mechanisms between the processor and
the programmable logic.

We use these instructions to invoke SNNAP and synchronize
its execution with the processor. To invoke SNNAP, the
CPU writes input vectors to a buffer in its cache. It signals
the accelerator to start computation using SEV and enters
hibernation with WFE. When SNNAP finishes writing outputs
to the cache, it signals the processor to wake up and continues
execution.

IV. HARDWARE DESIGN FOR SNNAP

This section describes SNNAP’s systolic-array design and
its FPGA implementation.
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Fig. 3: Implementing multi-layer perceptron neural networks
with systolic arrays.

A. Multi-Layer Perceptrons With Systolic Arrays

MLPs consist of a collection of neurons organized into
layers. Figure 3a depicts an MLP with four layers: the input
layer, the output layer, and two hidden layers. The computation
of one of the neurons in the second hidden layer is highlighted:
the neuron computes the weighted sum of the values of its
source neurons and applies the activation function f to the
result. The resulting neuron output is then sent to the next
layer.

The evaluation of an MLP neural network consists of a series
of matrix–vector multiplications interleaved with non-linear
activation functions. Figure 3b shows this approach applied
to the hidden layers of Figure 3a. We can schedule a systolic
algorithm for computing this matrix–vector multiplication onto
a 1-dimensional systolic array as shown in Figure 3c. When
computing a layer, the vector elements xi are loaded into each
cell in the array while the matrix elements elements wji trickle
in. Each cell performs a multiplication xi · wji, adds it to the
sum of products produced by the upstream cell to its left, and
sends the result to the downstream cell to its right. The output
vector produced by the systolic array finally goes through an
activation function cell, completing the layer computation.

Systolic arrays can be efficiently implemented using the
hard DSP slices that are common in modern FPGAs. Our
PSoC incorporates 220 DSP slices in its programmable logic
[57]. DSP slices offer pipelined fixed-point multiply-and-add
functionality and a hard-wired data bus for fast aggregation
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Fig. 2: Detailed PU datapath: PEs are implemented on multiply–add logic and produce a stream of weighted sums from an input
stream. The sums are sent to a sigmoid unit that approximates the activation function.

of partial sums on a single column of DSP slices. As a result,
a one-dimensional fixed-point systolic array can be contained
entirely in a single hard logic unit to provide high performance
at low power [56].

B. Processing Unit Datapath

Processing Units (PUs) are replicated processing cores
in SNNAP’s design. A PU comprises a chain of Processing
Elements (PEs), a sigmoid unit, and local memories including
block-RAMs (BRAMs) and FIFOs that store weights and
temporary results. A sequencer orchestrates communication
between the PEs, the sigmoid unit, local memories, and the
bus that connects each PU to the NPU’s memory interface.

The PEs that compose PUs map directly to a systolic array
cell as in Figure 2a. A PE consists of a multiply-and-add
module implemented on a DSP slice. The inputs to the neural
network are loaded every cycle via the input bus into each PE
following the systolic algorithm. Weights, on the other hand,
are statically partitioned among the PEs in local BRAMs.

The architecture can support an arbitrary number of PEs.
Our evaluation discusses the optimal number of PEs per PU
by discussing throughput-resources trade-offs.

Sigmoid unit. The sigmoid unit applies the neural network’s
activation function to outputs from the PE chain. The design,
depicted in Figure 2b, is a 3-stage pipeline comprising a lookup-
table and some logic for special cases. We use a y = x linear
approximation for small input values and y = ±1 for very
large inputs. Combined with a 2048-entry LUT, the design
yields at most 0.01% normalized RMSE.

SNNAP supports three commonly-used activation functions:
a sigmoid function S(x) = k

1+e−x , a hyperbolic tangent S(x) =
k · tanh(x), and a linear activation function S(x) = k · x,
where k is a steepness parameter. Microcode instructions (see
Section IV-C) dictate the activation function for each layer.

Flexible NN topology. The NPU must map an arbitrary number
of neurons to a fixed number of PEs. Consider a layer with n
input neurons, m output neurons and let p be the number of PEs
in a PU. Without any constraints, we would schedule the layer
on n PEs, each of which would perform m multiplications.
However, p does not equal n in general. When n < p, there
are excess resources and p − n PEs remain idle. If n > p,

we time-multiplex the computation onto the p PEs by storing
temporary sums in an accumulator FIFO. Section IV-C details
the process of mapping layers onto PEs.

A similar time-multiplexing process is performed to evaluate
neural networks with many hidden layers. We buffer sigmoid
unit outputs in a sigmoid FIFO until the evaluation of the
current layer is complete; then they can be used as inputs to
the next layer. When evaluating the final layer in a neural
network, the outputs coming from the sigmoid unit are sent
directly to the memory interface and written to the CPU’s
memory.

The BRAM space allocated to the sigmoid and accumulator
FIFOs limit the maximum layer width of the neural networks
that SNNAP can execute.

Numeric representation. SNNAP uses a 16-bit signed fixed-
point numeric representation with 7 fraction bits internally.
This representation fits within the 18× 25 DSP slice multiplier
blocks. The DSP slices also include a 48-bit fixed-point adder
that helps avoid overflows on long summation chains. We limit
the dynamic range of neuron weights during training to match
this representation.

The 16-bit width also makes efficient use of the ARM
core’s byte-oriented memory interface for applications that
can provide fixed-point inputs directly. For floating-point
applications, SNNAP converts the representation at its inputs
and outputs.

C. Processing Unit Control

Microcode. SNNAP executes a static schedule derived from
the topology of a neural network. This inexpensive scheduling
process is performed on the host machine before it configures
the accelerator. The schedule is represented as microcode stored
in a local BRAM.

Each microcode line describes a command to be executed
by a PE. We distinguish architectural PEs from physical PEs
since there are typically more inputs to each layer in a neural
network than there are physical PEs in a PU (i.e., n > p).
Decoupling the architectural PEs from physical PEs allow us to
support larger neural networks and makes the same micro-code
executable on PUs of different PE length.

Each instruction comprises four fields:



Schedule FU 0 1 2 3 4 5 6 7

Naive
PE0 x

(0)
2 x

(0)
3 x

(0)
4 x

(1)
2 x

(1)
3

PE1 x
(0)
2 x

(0)
3 x

(0)
4 x

(1)
2

SIG x
(0)
2 x

(0)
3 x

(0)
4

Efficient
PE0 x

(0)
2 x

(0)
3 x

(1)
2 x

(1)
3 x

(0)
4 x

(1)
4 x

(2)
2

PE1 x
(0)
2 x

(0)
3 x

(1)
2 x

(1)
3 x

(0)
4 x

(1)
4

SIG x
(0)
2 x

(0)
3 x

(1)
2 x

(1)
3 x

(0)
4 x

(1)
4

TABLE I: Static PU scheduling of a 2–2–1 neural network.
The naive schedule introduces pipeline stalls due to data
dependencies. Evaluating two neural network invocations
simultaneously by interlacing the layer evaluations can eliminate
those stalls.

1) ID: the ID of the architectural PE executing the
command.

2) MADD: the number of multiply–add operations that
must execute to compute a layer.

3) SRC: input source selector; either the input FIFO or
the sigmoid FIFO.

4) DST: the destination of the output data; either the next
PE or the sigmoid unit. In the latter case, the field
also encodes (1) the type of activation function used
for that layer, and (2) whether the layer is the output
layer.

Sequencer. The sequencer is a finite-state machine that processes
microcoded instructions to orchestrate data movement between
PEs, input and output queues, and the sigmoid unit within
each PU. Each instruction is translated by the sequencer into
commands that get forwarded to a physical PE along with the
corresponding input data. The mapping from architectural PE
(as described by the microcode instruction) to the physical
PE (the actual hardware resource) is done by the sequencer
dynamically based on resource availability and locality.

Scheduler optimizations. During microcode generation, we use
a simple optimization that improves utilization by minimizing
pipeline stalls due to data dependencies. The technique improves
overall throughput for a series of invocations at the cost of
increasing the latency of a single invocation.

Consider a simple PU structure with two PEs and a one-
stage sigmoid unit when evaluating a 2–2–1 neural network
topology. Table I presents two schedules that map this neural
network topology onto the available resources in the pipeline
diagram. Each schedule tells us which task each functional unit
is working on at any point in time. For instance, when PE1 is
working on x2, it is multiplying x1 ×w12 and adding it to the
partial sum x0 × w02 computed by PE0.

Executing one neural network invocation at a time results
in a inefficient schedule as illustrated by the naive schedule in
Table I. The pipeline stalls here result from (1) dependencies
between neural network layers and (2) contention over the PU
input bus. Data dependencies occur when a PE is ready to
compute the next layer of a neural network, but has to wait for
the sigmoid unit to produce the inputs to that next layer.

We eliminate these stalls by interleaving the computation
of layers from multiple neural network invocations as shown
in the efficient schedule in Table I. Pipeline stalls due to data
dependencies can be eliminated as long as there are enough
neural network invocations waiting to be executed. SNNAP’s

throughput-oriented workloads tend to provide enough invoca-
tions to justify this optimization.

V. EVALUATION

We implemented SNNAP on an off-the-shelf programmable
SoC. In this section, we evaluate our implementation to assess
its performance and energy benefits over software execution,
to characterize the design’s behavior, and to compare against a
high-level synthesis (HLS) tool. The HLS comparison provides
a reference point for SNNAP’s performance, efficiency, and
programmer effort requirements.

A. Experimental setup

Applications. Table II shows the applications measured in this
evaluation, which are the benchmarks used by Esmaeilzadeh
et al. [22] along with blackscholes from the PARSEC
benchmark suite [6]. We offload one approximate region from
each application to SNNAP. These regions are mapped to neural
network topologies used in previous work [22], [11]. The table
shows a hypothetical “Amdahl speedup limit” computed by
subtracting the measured runtime of the kernel to be accelerated
from the overall benchmark runtime.

Target platform. We evaluate the performance, power and energy
efficiency of SNNAP running against software on the ZYNQ
ZC702 evaluation platform described in Table III. The ZYNQ
processor integrates a mobile-grade ARM Cortex-A9 and a
Xilinx FPGA fabric on a single TSMC 28nm die.

We compiled our benchmarks using GCC 4.7.2 at its -O3
optimization level. We ran the benchmarks directly on the bare
metal processor.

Monitoring performance and power. To count CPU cycles, we
use the event counters in the ARM’s architectural performance
monitoring unit and performance counters implemented in the
FPGA. The ZYNQ ZC702 platform uses Texas Instruments
UCD9240 power supply controllers, which allow us to measure
voltage and current on each of the board’s power planes. This
allows us to track power usage for the different sub-systems
(e.g., CPU, FPGA, DRAM).

NPU configuration. Our results reflect a SNNAP configuration
with 8 PUs, each comprised of 8 PEs. The design runs at
167 MHz, or 1/4 of the CPU’s 666MHz frequency. For each
benchmark, we configure all the PUs to execute the same neural
network workload.

High-Level Synthesis infrastructure. We use Vivado HLS 2014.2
to generate hardware kernels for each benchmark. We then
integrate the kernels into SNNAP’s bus interface and program
the FPGA using Vivado Design Suite 2014.2.

B. Performance and Energy

This section describes the performance and energy benefits
of using SNNAP to accelerate our benchmarks.

Performance. Figure 4a shows the whole application speedup
when SNNAP is used to execute each benchmark’s target region,
while the rest of the application runs on the CPU, over an all-
CPU baseline.



Application Description Error Metric NN Topology NN Config. Size Error Amdahl
Speedup (×)

blackscholes option pricing mean error 6–20–1 6308 bits 7.83% > 100
fft radix-2 Cooley-Tukey FFT mean error 1–4–4–2 1615b 0.1% 3.92
inversek2j inverse kinematics for 2-joint arm mean error 2–8–2 882b 1.32% > 100
jmeint triangle intersection detection miss rate 18–32–8–2 15608b 20.47% 99.65
jpeg lossy image compression image diff 64–16–4 21264b 1.93% 2.23
kmeans k-means clustering image diff 6–8–4–1 3860b 2.55% 1.47
sobel edge detection image diff 9–8–1 3818b 8.57% 15.65

TABLE II: Applications used in our evaluation. The “NN Topology” column shows the number of neurons in each MLP layer. The
“NN Config. Size” column reflects the size of the synaptic weights and microcode in bits. “Amdahl Speedup” is the hypothetical
speedup for a system where the SNNAP invocation is instantaneous.

Zynq SoC

Technology 28nm TSMC
Processing 2-core Cortex-A9

FPGA Artix-7
FPGA Capacity 53KLUTs, 106K Flip-Flops

Peak Frequencies 667MHz A9, 167MHz FPGA
DRAM 1GB DDR3-533MHz

Cortex-A9

L1 Cache Size 32kB I$, 32kB D$
L2 Cache Size 512kB

Scratch-Pad 256kB SRAM
Interface Port AXI 64-bit ACP

Interface Latency 93 cycles roundtrip

NPU

Number of PUs 8
Number of PEs 8

Weight Memory 1024×16-bit
Sigmoid LUT 2048×16-bit

Accumulator FIFO 1024×48-bit
Sigmoid FIFO 1024×16-bit

DSP Unit 16×16-bit multiply, 48-bit add

TABLE III: Microarchitectural parameters for the Zynq platform, CPU, FPGA and NPU.
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Fig. 4: Performance and energy benefit of SNNAP acceleration over an all-CPU baseline execution of each benchmark.

The average speedup is 3.78×. Among the benchmarks,
inversek2j has the highest speedup (38.12×) since the bulk
of the application is offloaded to SNNAP, and the target region
of code includes trigonometric function calls that take over
1000 cycles to execute on the CPU and that a small neural
network can approximate. Conversely, kmeans sees only a
1.30× speedup, mostly because the target region is small and
runs efficiently on a CPU, while the corresponding neural
network is relatively deep.

Energy. Figure 4b shows the energy savings for each benchmark
over the same all-CPU baseline. We show the savings for two
different energy measurements: (1) the SoC with its DRAM
and other peripherals, and (2) the core logic of the SoC. On
average, neural acceleration with SNNAP provides a 2.77×
energy savings for the SoC and DRAM and a 1.82× savings
for the core logic alone.

The Zynq+DRAM evaluation shows the power benefit from
using SNNAP on a chip that already has an FPGA fabric. Both
measurements include all the power supplies for the Zynq chip

and its associated DRAM and peripherals, including the FPGA.
The FPGA is left unconfigured for the baseline.

The core logic evaluation provides a conservative estimate
of the potential benefit to a mobile SoC designer who is
considering including an FPGA fabric in her design. We
compare a baseline consisting only of the CPU with the power
of the CPU and FPGA combined. No DRAM or peripherals
are included.

On all power domains and for all benchmarks except
jmeint and kmeans, neural acceleration on SNNAP results
in energy savings. In general, the more components we include
in our power measurements, the lower the relative power cost
and the higher the energy savings from neural acceleration.
inversek2j, the benchmark with the highest speedup, also
has the highest energy savings. For jmeint and kmeans
we observe a decrease in energy efficiency in the core logic
measurement; for kmeans, we also see a decrease in the
Zynq+DRAM measurement. While the CPU saves power by
sleeping while SNNAP executes, the accelerator incurs more
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power than this saves, so a large speedup is necessary to yield
energy savings.

C. Characterization

This section supplements our main energy and performance
results with secondary measurements to the primary results in
context and justify our design decisions.

Impact of parallelism. Figure 5 shows the performance impact
of SNNAP’s parallel design by varying the number of PUs.
On average, increasing from 1 PU to 2 PUs, 4 PUs, and
8 PUs improves performance by 1.52×, 2.03×, and 2.40×
respectively. The sobel, kmeans and jmeint benchmarks
require at least 2, 4, and 8 PUs respectively to see any speedup.

Higher PU counts lead to higher power consumption, but
the cost can be offset by the performance gain. The best
energy efficiency occurs at 8 PUs for most benchmarks. The
exceptions are jpeg and fft, where the best energy savings
are with 4 PUs. These benchmarks have a relatively low
“Amdahl speedup limit” , so they see diminishing returns from
parallelism.

Impact of batching. Figure 6 compares the performance of
batched SNNAP invocations, single invocations, and zero-

latency invocations - an estimate of the speedup if there were no
communication latency between the CPU and the accelerator.

With two exceptions, non-batched invocations lead to a
slowdown due to communication latency. Only inversek2j
and jpeg see a speedup since their target regions are large
enough to outweigh the communication latency. Comparing
with the zero-latency estimate, we find that batch invocations
are effective at hiding this latency. Our 32-invocation batch
size is within 11% of the zero-latency ideal.

Optimal PE count. Our primary SNNAP configuration uses
8 PEs per PU. A larger PE count can decrease invocation
latency but can also have lower utilization, so there is a trade-
off between fewer, larger PUs or more, smaller PUs given the
same overall budget of PEs. In Figure 7a, we examine this
trade-off space by sweeping configurations with a fixed number
of PEs. The NPU configurations range from 1 PU consisting
of 16 PEs (1× 16) through 16 PUs each consisting of a single
PE (16×1). The 16×1 arrangement offers the best throughput.
However, resource utilization is not constant: each PU has
control logic and memory overhead. The 16 × 1 NPU uses
more than half of the FPGA’s LUT resources, whereas the 2×8
NPU uses less than 4% of all FPGA resources. Normalizing
throughput by resource usage (Figure 7b) indicates that the
2× 8 configuration is optimal.

D. Design Statistics

FPGA utilization. Figure 7c shows the FPGA fabric’s resource
utilization for varying PU counts. A single PU uses less than
4% of the FPGA resources. The most utilized resources are the
slice LUTs at 3.92% utilization and the DSP units at 3.64%.
With 2, 4, 8, and 16 PUs, the design uses less than 8%, 15%
30% and 59% of the FPGA resources respectively and the
limiting resource is the DSP slices. The approximately linear
scaling reflects SNNAP’s balanced design.

Memory Bandwidth. Although the Zynq FPGA can accommo-
date 16 PUs, the current ACP interface design does not satisfy
the bandwidth requirements imposed by compute-resource
scaling for benchmarks with high bandwidth requirements (e.g.
jpeg). This limitation is imposed by the ACP port used to
access the CPUs cache hierarchy. During early design explo-
ration, we considered accessing memory via higher-throughput
non-coherent memory ports, but concluded experimentally that
at a fine offload granularity, the frequent cache flushes were
hurting performance. As a result, we evaluate SNNAP at 8-PUs
to avoid being memory bound by the ACP port. We leave
interface optimizations and data compression schemes that
could increase effective memory bandwidth as future work.

Output quality. We measure SNNAP’s effect on output quality
using application-specific error metrics, as is standard in the
approximate computing literature [44], [21], [22], [46]. Table II
lists the error metrics.

We observe less than 10% application output error for all
benchmarks except jmeint. jmeint had high error due to
complicated control flow within the acceleration region, but we
include this benchmark to fairly demonstrate the applicability
of neural acceleration. Among the remaining applications, the
highest output error occurs in sobel with 8.57% mean absolute
pixel error with respect to a precise execution.
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Fig. 7: Exploration of SNNAP static resource utilization.

Application Effort Clock Pipelined Util.

blackscholes 3 days 148 MHz yes 37%
fft 2 days 166 MHz yes 10%
inversek2j 15 days 148 MHz yes 32%
jmeint 5 days 66 MHz no 39%
jpeg 5 days 133 MHz no 21%
kmeans 2 days 166 MHz yes 3%
sobel 3 days 148 MHz yes 5%

TABLE IV: HLS-kernel specifics per benchmark: required
engineering time (working days) to accelerate each benchmark
in hardware using HLS, kernel clock, whether the design was
pipelined, most-utilized FPGA resource utilization.

E. HLS Comparison Study

We compare neural acceleration with SNNAP against
Vivado HLS [55]. For each benchmark, we attempt to compile
using Vivado HLS the same target regions used in neural
acceleration. We synthesize a precise specialized hardware
datapath and integrate it with the same CPU–FPGA interface
we developed for SNNAP and contrast whole-application
speedup, resource-normalized throughput, FPGA utilization,
and programmer effort.

Speedup.

Table IV shows statistics for each kernel we synthesized
with Vivado HLS. The kernels close timing between 66 MHz
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Fig. 9: Resource-normalized throughput of the NPU and HLS
accelerators.

and 167 MHz (SNNAP runs at 167 MHz). We compare the
performance of the HLS-generated hardware kernels against
SNNAP.

Figure 8a shows the whole-application speedup for HLS
and SNNAP. The NPU outperforms HLS on all benchmarks,
yielding a 3.78× average speedup compared to 2× for HLS.
The jmeint benchmark provides an example of a kernel that
is not a good candidate for HLS tools; its dense control flow
leads to highly variable evaluation latency in hardware, and the
HLS tool was unable to pipeline the design. Similarly, jpeg
performs poorly using HLS due to DSP resource limitations
on the FPGA. Again, the HLS tool was unable to pipeline the
design, resulting in a kernel with long evaluation latency.

Resource-normalized kernel throughput. To assess the area
efficiency of SNNAP and HLS, we isolate FPGA execution
from the rest of the application. We compute the theoretical
throughput (evaluations per second) by combining the pipeline
initiation interval (cycles per evaluation) from functional
simulation and the fmax (cycles/second) from post-place-and-
route timing analysis. We obtain post-place-and-route resource
utilization by identifying the most-used resource in each design.
The resource-normalized throughput is the ratio of these two
metrics.

Figure 9 compares the resource-normalized throughput
for SNNAP and HLS-generated hardware kernels. Neural
acceleration does better than HLS for blackscholes,
inversek2j, jmeint and jpeg. In particular, while HLS
provides better absolute throughput for blackscholes and
inversek2j, the kernels also use an order of magnitude more
resources than a single SNNAP PU. kmeans and sobel have
efficient HLS implementations with utilization roughly equal
to one SNNAP PU, resulting in 2–5× greater throughput.

Programming experience. “C-to-gates” tools are promoted
for their ability to hide the complexity of hardware design.
With our benchmarks, however, we found hardware expertise
to be essential for getting good results using HLS tools.
Every benchmark required hardware experience to verify the
correctness of the resulting design and extensive C-code tuning
to meet the tool’s requirements.

Table IV lists the number of working days required for a
student to produce running hardware for each benchmark using
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Fig. 8: Performance and energy comparisons of HLS and SNNAP acceleration.

HLS. The student is a Masters researcher with Verilog and
hardware design background but not prior HLS experience.
Two months of work was needed for familiarization with
the HLS tool and the design of a kernel wrapper to interact
with SNNAP’s custom memory interface. After this initial
cost, compiling each benchmark took between 2 and 15 days.
blackscholes, fft, kmeans, and sobel all consist of
relatively simple code, and each took only a few days to gener-
ate fast kernels running on hardware. The majority of the effort
was spent tweaking HLS compiler directives to improve pipeline
efficiency and resource utilization. Accelerating jmeint was
more involved and required 5 days of effort, largely spent
attempting (unsuccessfully) to pipeline the design. jpeg also
took 5 days to compile, which was primarily spent rewriting
the kernel’s C code to make it amenable to HLS by eliminating
globals, precomputing lookup tables, and manually unrolling
some loops. Finally, inversek2j required 15 days of effort.
The benchmark used the arc-sine and arc-cosine trigonometric
functions, which are not supported by the HLS tools, and
required rewriting the benchmark using mathematical identities
with the supported arc-tangent function. The latter exposed
a bug in the HLS workflow that was eventually resolved by
upgrading to a newer version of the Vivado tools.

Discussion. While HLS offers a route to FPGA use without
approximation, it is far from flawless: significant programmer
effort and hardware-design expertise is still often required. In
contrast, SNNAP acceleration uses a single FPGA configuration
and requires no hardware knowledge. Unlike HLS approaches,
which place restrictions on the kind of C code that can be
synthesized, neural acceleration treats the code as a black box:
the internal complexity of the legacy software implementation
is irrelevant. SNNAP’s FPGA reconfiguration-free approach
also avoids the overhead of programming the underlying FPGA
fabric, instead using a small amount of configuration data that
can be quickly loaded in to accelerate different applications.
These advantages make neural acceleration with SNNAP a
viable alternative to traditional C-to-gates approaches.

VI. RELATED WORK

Our design builds on related work in the broad areas of
approximate computing, acceleration, and neural networks.

Approximate computing. A wide variety of applications can be
considered approximate: occasional errors during execution do
not obstruct the usefulness of the program’s output. Recent
work has proposed to exploit this inherent resiliency to trade off
output quality to improve performance or energy consumption
using software [4], [46], [3], [35], [36], [30] or hardware [17],
[34], [21], [33], [37], [10], [22], [44], [26] techniques. SNNAP
represents the first work (to our knowledge) to exploit this
trade-off using tightly integrated on-chip programmable logic to
realize these benefits in the near term. FPGA-based acceleration
using SNNAP offers efficiency benefits that complement
software approximation, which is limited by the overheads
of general-purpose CPU execution, and custom approximate
hardware, which cannot be realized on today’s chips.

Neural networks as accelerators. Previous work has recog-
nized the potential for hardware neural networks to act as
accelerators for approximate programs, either with automatic
compilation [22], [48] or direct manual configuration [11],
[50], [5]. This work has typically assumed special-purpose
neural-network hardware; SNNAP represents an opportunity
to realize these benefits on commercially available hardware.
Recent work has proposed combining neural transformation
with GPU acceleration to unlock order-of-magnitude speedups
by elimiating control flow divergence in SIMD applications [25],
[26]. This direction holds a lot of promise in applications
where a large amount of parallelism is available. Until GPUs
become more tightly integrated with the processor core,
their applicability remains limited in applications where the
invocation latency is critical (i.e. small code offload regions).
Additionally the power envelope of GPUs has been traditionally
high. Our work targets low power accelerators and offers higher
applicability by offloading computation at a finer granularity
than GPUs.

Hardware support for neural networks. There is an extensive
body of work on hardware implementation of neural networks
both in digital [38], [19], [58], [12], [16], [7] and analog [8],
[45], [49], [32] domains. Other work has examined fault-tolerant
hardware neural networks [29], [50]. There is also significant
prior effort on FPGA implementations of neural networks ([58]
contains a comprehensive survey). Our contribution is a design



that enables automatic acceleration of approximate software
without engaging programmers in hardware design.

FPGAs as accelerators. This work also relates to work on
synthesizing designs for reconfigurable computing fabrics to
accelerate traditional imperative code [40], [41], [15], [23]. Our
work leverages FPGAs by mapping diverse code regions to
neural networks via neural transformation and accelerating those
code regions onto a fixed hardware design. By using neural
networks as a layer of abstraction, we avoid the complexities
of hardware synthesis and the overheads of FPGA compilation
and reconfiguration. Existing commercial compilers provide
means to accelerate general purpose programs [55], [1] with
FPGAs but can require varying degrees of hardware expertise.
Our work presents a programmer-friendly alternative to using
traditional “C-to-gates” high-level synthesis tools by exploiting
applications’ tolerance to approximation.

VII. CONCLUSION

SNNAP enables the use of programmable logic to accelerate
approximate programs without requiring hardware design. Its
high-throughput systolic neural network mimics the execution
of existing imperative code. We implemented SNNAP on
the Zynq system-on-chip, a commercially available part that
pairs CPU cores with programmable logic and demonstrate
3.8× speedup and 2.8× energy savings on average over
software execution. The design demonstrates that approximate
computing techniques can enable effective use of programmable
logic for general-purpose acceleration while avoiding custom
logic design, complex high-level synthesis, or frequent FPGA
reconfiguration.
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