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Abstract

Many advanced programming tools—for both end-users and expert
developers—rely on program synthesis to automatically generate
implementations from high-level specifications. These tools often
need to employ tricky, custom-built synthesis algorithms because
they require synthesized programs to be not only correct, but also
optimal with respect to a desired cost metric, such as program size.
Finding these optimal solutions efficiently requires domain-specific
search strategies, but existing synthesizers hard-code the strategy,
making them difficult to reuse.

This paper presents metasketches, a general framework for spec-
ifying and solving optimal synthesis problems. Metasketches make
the search strategy a part of the problem definition by specifying
a fragmentation of the search space into an ordered set of clas-
sic sketches. We provide two cooperating search algorithms to ef-
fectively solve metasketches. A global optimizing search coordi-
nates the activities of local searches, informing them of the costs
of potentially-optimal solutions as they explore different regions
of the candidate space in parallel. The local searches execute an
incremental form of counterexample-guided inductive synthesis to
incorporate information sent from the global search. We present
SYNAPSE, an implementation of these algorithms, and show that
it effectively solves optimal synthesis problems with a variety of
different cost functions. In addition, metasketches can be used to ac-
celerate classic (non-optimal) synthesis by explicitly controlling the
search strategy, and we show that SYNAPSE solves classic synthesis
problems that state-of-the-art tools cannot.

Categories and Subject Descriptors D.1.2 [Programming Tech-

niques]: Automatic Programming; I.2.2 [Artificial Intelligence]: Automatic
Programming—Program synthesis

Keywords Program synthesis

1. Introduction

Program synthesis is the classic problem of automatically produc-
ing an implementation from a high-level correctness specification.
Recent research efforts have addressed this problem successfully for
a variety of application domains, from browser layout [23] to exe-
cutable biology [17]. But for many applications, such as synthesis-
aided compilation [27, 31] or end-user programming [10, 11], it is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

POPL ’16, January 20–22, 2016, St. Petersburg, FL, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3549-2/16/01. . . $15.00.
http://dx.doi.org/10.1145/2837614.2837666

not enough to produce any correct program. These applications re-
quire the synthesized implementation to also be optimal with respect
to a desired cost function—for example, the number of instructions
or the sum of their latencies.

Optimal synthesis involves producing a program that is both
correct with respect to a (logical) specification and optimal with
respect to a cost function. Existing tools for optimal synthesis are
highly specialized, employing custom search strategies to quickly
find the best solution in a large space of candidate programs.
For example, a superoptimizer [16, 31] finds the least expensive
instruction sequence (according to a cost model) equivalent to
a given reference implementation. To make this task tractable,
a superoptimizer must be able to focus its search on candidate
programs cheaper than the currently-optimal solution. Building
such a tool on top of existing synthesizers is impractical, because
they provide no means for the tool to guide or control the search
strategy. Instead, tool developers are forced to implement their own
synthesis engines from scratch, giving up the potential to benefit
from advances in general synthesis technology.

In this paper, we present metasketches, a general framework for
specifying and solving optimal synthesis problems. A metasketch
is an ordered set of sketches [35], together with a cost function to
minimize and a gradient function to direct the search. A sketch is a
syntactic template that defines a finite space of candidate programs.
The union of the (possibly overlapping) sketches describes the
candidate space of the metasketch. The ordered set of sketches,
together with the cost and gradient functions, expresses a high-
level search strategy: the sketches fragment the candidate space into
regions that can be explored in parallel, while the sketch ordering
and the two functions focus the search toward cheaper regions of
the space. Because a metasketch consists of a set of classic sketches,
solving a metasketch reduces to solving a set of classic synthesis
problems, and so tools built with metasketches benefit from progress
in the underlying synthesis techniques.

To solve an optimal synthesis problem expressed as a metasketch,
we employ two cooperating algorithms: a global optimizing search
over the entire candidate space, and many parallel instances of
a local combinatorial search over the individual sketches in the
metasketch. The local search algorithm implements an incremental
form of counterexample-guided inductive synthesis (CEGIS). The
global search drives this incremental local exploration in two ways.
First, it uses the gradient function to select which sketches to explore
locally whenever a satisfying solution (and therefore a tighter upper
bound on the cost) is found. The gradient function is simple: given a
numerical cost, it returns the set of all sketches from the metasketch
that (may) contain a cheaper candidate program. Second, the global
search communicates the cost of discovered solutions to all running
local searches, which integrate these results to prune their own
candidate spaces. The search process proceeds until an optimal
solution is found or the global search space is exhausted. This
search strategy is highly effective, solving both classic and optimal
synthesis problems that cannot be solved by existing techniques.



In addition to enabling efficient search, metasketches also bring
new expressive power to syntax-guided synthesis. By representing
the search space as a set of sketches, a metasketch can describe can-
didate spaces such as “the set of all programs, of any length, that are
in static single assignment (SSA) form and that contain no unused
variables.” A space of this form cannot be expressed with a single
sketch (because it is infinite) nor can it be expressed with a context-
free grammar (because neither the SSA nor the used-variable con-
straints are context-free). A set-of-sketches space description also
supports an effective new form of encoding optimization, which
we call structure constraints. These constraints take the form of
assertions within an individual sketch, which rule out candidates
that are semantically equivalent to cheaper programs from other
sketches. The resulting metasketch avoids redundant work in the
local searches, thus accelerating the global synthesis process.

We have implemented our optimal synthesis approach in a tool
called SYNAPSE, built on top of the ROSETTE language [39, 40].
We have used SYNAPSE to develop and solve metasketches for a
variety of optimal synthesis problems, from superoptimization to
fixed-point approximation of computational kernels. Our experi-
ments show that SYNAPSE is not only effective at solving optimal
synthesis problems, but that it can also solve standard synthesis
benchmarks [3] that are intractable for state-of-the-art syntax-guided
synthesizers (due to their large, monolithic search spaces that we
fragment with metasketches). The fragmented search space exposed
by a metasketch also allows SYNAPSE to realize significant parallel
speedup for large synthesis problems. We find that for many optimal
synthesis problems, the search algorithm spends most of its time
proving optimality of the final candidate solution, suggesting that
the search can quickly output intermediate results that will likely
be optimal. Finally, we show that SYNAPSE can effectively reason
about a variety of cost functions through several examples: fitting a
linear model to a training data set, optimizing worst-case execution
time of a program, and training a small neural network.

In summary, this paper makes the following contributions:

• We introduce the first generic framework for optimal synthesis.
The core of our framework is the metasketch abstraction, which
combines a novel representation of a syntactic search space
as a (countable ordered) set of finite sketches with a cost
function to minimize and a gradient function to guide the search.
Metasketches bring new expressive power to syntax-guided
synthesis and enable effective search for optimal solutions.

• We present a new algorithm for optimal synthesis that uses
metasketches to layer a parallel global search on top of a local
combinatorial search. The combinatorial search is an incremental
variant of counterexample-guided inductive synthesis (CEGIS).
We prove that our algorithm is sound, and that it is complete and
optimal for finite metasketches, as well as infinite metasketches
that satisfy a simple compactness property.

• We present SYNAPSE, a prototype implementation of our ap-
proach, and evaluate it on standard benchmark suites for synthe-
sis [3] and approximate computing [9]. Our results show that
SYNAPSE can solve both classic and optimal synthesis problems
that existing tools cannot solve.

The remainder of the paper is organized as follows. In Section 2,
we formulate the problem of optimal syntax-guided synthesis. Sec-
tion 3 introduces metasketches and presents examples of metas-
ketches designed for superoptimization and approximate computing.
We describe and characterize our synthesis algorithm in Section 4.
Section 5 presents an evaluation of SYNAPSE on a diverse set of
benchmarks. Section 6 discusses related work, and Section 7 con-
cludes.

expressions e ::= l | x | (lambda (x . . . ) e) | (e e . . . ) |
(if e e e) | (let* ([x e] . . . ) e) | (assert e)

l ::= true | false | integer literal
x ::= identifier | = | > | + |- | * | / | & | . . .

definitions d ::= (define x e)
forms f ::= d | e
programs p := f | p f

Figure 1. Syntax of programs in the simple Scheme-like language
SYN we use for examples.

2. Optimal Syntax-Guided Synthesis

This section briefly reviews syntax-guided synthesis [2, 35] and
formalizes the problem of optimal syntax-guided synthesis. We also
introduce a small Scheme-like synthesis language, SYN, that will be
used to present (optimal) synthesis examples throughout the paper.
Our approach is independent of SYN, however, and can be applied
to any language that supports basic sketching constructs (such as
Sketch [35] or ROSETTE [40]).

Synthesis. The program synthesis problem is to automatically
discover a program P that implements a desired specification φ.
Programs are written in a language L, and specifications in a
decidable theory T (or a decidable combination of theories Ti).
We assign a deterministic semantics JP K to each program P ∈ L.
For a set of programs S ⊆ L, we write JSK to denote the set
{JP K | P ∈ S}. A specification is a formula φ(x, JP K(x)) in the
theory T that relates program inputs to outputs. Given a specification
φ, the program synthesis task is to find a program P ∈ L such that
the formula ∀x. φ(x, JP K(x)) is valid modulo T .

Programs and Specifications. For examples in this paper, we take
the language L to be SYN, a subset of core Scheme [29] shown in
Figure 1. SYN expressions are constructed from booleans, signed
finite-precision integers, lambda terms, applications, conditionals,
and sequential let-binding expressions. The language also includes
the usual built-in procedures for operating on booleans and integers.
We take the specification theory T to be the quantifier-free theory
of fixed-width bitvectors. For convenience, specifications can be
expressed as assertions in SYN programs in the standard manner.1

An assertion succeeds if the value of the expression argument is not
false. The semantics of SYN is standard [29], except that all built-in
integer operators also accept boolean arguments, treating true as 1
and false as 0.

Example 1. Suppose that we are trying to synthesize a SYN

implementation of the max function. In the theory of bitvectors, the
specification for max is straightforward:

φmax(〈x, y〉, JP K(x, y)) ≡ JP K(x, y) = ite(x > y, x, y)

There are many programs in SYN that meet this specification, such
as the following SSA-style implementation:2

(define (max1 i1 i2)

(let* ([o1 (> i1 i2)]

[o2 (if o1 i1 i2)])

o2))

A program synthesizer should return max1 or another correct imple-
mentation from SYN.

Syntax-Guided Synthesis. Syntax-guided synthesis is a form of
program synthesis that restricts the search for P to a space of can-
didate implementations C ⊆ L defined by a syntactic template [2].
This restriction makes the search more tractable, and it enables the

1 In particular, SYN assertions can be reduced to formulas in the theory of
bitvectors for all finite SYN programs, using existing methods [40].
2 We write (define (x y . . . ) e) to abbreviate (define x (lambda (y . . . ) e)).



programmer to describe the desired implementation using a mix of
syntactic and semantic constraints.

Syntactic constraints commonly take the form of a context-free
grammar [2] or a sketch [35]. A sketch is a partial implementation of
a program, with missing expressions called holes to be discovered
by the synthesizer. Holes are constrained to admit expressions from
a finite set of choices—for example, a hole could be replaced
with a 32-bit integer constant or with an expression obtained from
a finite unrolling of a context-free grammar. Unlike context-free
grammars, sketches can express only finite candidate spaces C. In
return, however, they provide the programmer with more control
over the shape of the search space, as well as the ability to express
syntactic constraints that are not context-free.

Sketches. To enable sketching in SYN, we add a hole construct:

expressions e ::= . . . | (?? e . . . )

The hole construct can be used in one of two ways. When it is
applied to no expressions, (??), it represents a placeholder for an
integer constant. Otherwise, it is a placeholder that selects from
among the provided expressions.

We call a program in SYN a sketch if it contains holes. A sketch
S ∈ L defines a set of candidate programs S, which is the set of
all possible programs produced by replacing the holes H in P with
concrete expressions. We can define the synthesis problem in terms
of completing the holes: given a sketch S, the program synthesis

task is to find a completion ~h for the holes H in S such that the

formula ∀x. φ(x, JS[H := ~h]K(x)) is valid modulo T . We abuse

notation to write JSK for the set of semantics JSK of all possible
programs produced by a sketch.

Example 2. Sketches allow programmers to capture domain in-
sights that can make synthesis more tractable. For example, a SYN

sketch for max might specify that the last operation is always an if:

(define (max1-sketch i1 i2)

(let* ([o1 ((?? > >= = < <=) (?? i1 i2) (?? i1 i2))]

[o2 (if o1 i1 i2)])

o2))

The advantage of a sketch is that the synthesizer need only discover
an assignment to the holes that satisfies the specification φ, without
having to explore all possible programs in SYN.

Optimal Syntax-Guided Synthesis. Even with syntactic con-
straints, there is rarely a unique solution to a given synthesis
problem. Our simple max1-sketch, for example, has four correct
solutions, and the synthesizer is free to return any one of them.
But for many applications, some solutions are more desirable than
others due to requirements such as program size, execution time, or
memory or register usage. For these applications, the synthesis task
becomes one of optimization rather than search.

We define the optimal syntax-guided synthesis problem as a
generalization of syntax-guided synthesis. The optimal program
synthesis problem is the task of searching a space of candidate
programs C for a lowest-cost implementation P that satisfies the
given specification φ. The search is performed with respect to a cost
function κ, which assigns a numeric cost to each program P ∈ L.

Definition 1 (Optimal Syntax-Guided Synthesis). Let L be a pro-
gramming language, and T a decidable theory. Given a specifica-
tion formula φ(x, JP K(x)) in T , a cost function κ : L → R, and
a search space C ⊆ L of candidate programs, the optimal (syntax-
guided) synthesis problem is to find a program P ∈ C such that the
formula ∀x. φ(x, JP K(x)) is valid modulo T , and κ(P ) is minimal
among all such programs.

Note that when the cost function κ is constant, optimal synthesis
reduces to syntax-guided synthesis.

To ensure that the optimal synthesis problem remains decidable,
we must place restrictions on the cost function κ. Existing optimal
synthesis techniques often require κ to reason only about program
syntax. For our synthesis approach (Section 4), it is sufficient to
require that the evaluation of κ on a program P be reducible to a
term in a decidable theory T . This allows us to encode cost functions
that reason not only about program syntax but also about program
semantics. For example, in Section 5.6, we demonstrate a simplified
worst-case execution time metasketch, which reasons about feasible
paths through the program’s control flow.

Example 3. Optimal synthesis chooses among multiple correct
candidate programs by minimizing a given cost function. Different
cost functions will produce different optimal solutions. For example,
suppose we want to find an implementation P ∈ SYN of our φmax

specification that minimizes the sum of operation costs:

programs κ(p) =
∑

f∈p κ(f)

definitions κ ((define x e)) = κ(e)

expressions κ ((if e1 e2 e3)) = 1 + κ(e1) + κ(e2) + κ(e3)

κ ((let* ([xiei] . . .) e)) = κ(e) +
∑

i κ(ei)

κ ((lambda (x . . .) e)) = κ(e)

κ ((assert e)) = 0

κ ((e ei . . .)) = κ(e) +
∑

i κ(ei)

κ (x) = 1 if x is a built-in operator
= 0 otherwise

The program max1 from Example 1 has a cost of 2, and it is an
optimal solution under the cost function κ. However, suppose that
we are targeting an environment where branches are expensive and
to be avoided. We can update the cost function to penalize branches
as follows:

expressions κ ((if e1 e2 e3)) = 8 + κ(e1) + κ(e2) + κ(e3)

Under this cost function, the max1 solution has a cost of 9. The
new optimal solution has a cost of 4 and implements an arithmetic
manipulation for the maximum of two (finite precision) integers:

(define (max2 i1 i2)

(let* ([o1 (- i2 i1)]

[o2 (<= i1 i2)]

[o3 (* o1 o2)]

[o4 (+ i1 o3)])

o4))

Given φmax, C = SYN, and our new cost function, an optimal
synthesizer should return max2, or another correct program with the
same cost as max2.

3. Metasketches

This section introduces metasketches (Def. 2), a new abstraction for
specifying and solving optimal synthesis problems. Metasketches
generalize sketches, enabling a description of an infinite space of
candidate programs with a countable, ordered set of finite sketches.
This representation permits fine-grained control over the shape of the
candidate space, which is critical for effective search. A metasketch
additionally provides a means of assigning cost to programs and
of directing the search toward lower-cost regions of the candidate
space. This section defines metasketches, describes their properties,
and illustrates their utility for capturing insights that enable efficient
search. Section 4 presents a synthesis algorithm that exploits the
search strategy exposed by metasketches.

3.1 The Metasketch Abstraction

A metasketch consists of three components: (1) a space of candidate
programs, represented as a countable, ordered set of finite sketches;



(2) a cost function from programs to numeric cost values; and (3) a
gradient function from each cost value c to a set of sketches (i.e.,
a subspace) that may contain a program with a lower cost than c.
The space component provides a way to fragment a monolithic
search space into a set of finite regions that can be explored
independently of one another. Because each region is described by
a sketch, the programmer gains the ability (as we show later) to use
context-sensitive structure constraints to reduce overlap between the
regions—thus making both the global and local search tasks easier.
The cost and gradient functions provide a way to navigate the local
and global search spaces in a cost-sensitive way. Together, these
components enable the programmer to easily convey key problem-
specific insights to a generic search algorithm.

Definition 2 (Metasketch). A metasketch is a tuple m = 〈S, κ, g〉,
where:

• The space S ⊆ L is a countable set of sketches in L, equipped
with a total ordering relation �.

• The cost function κ : L → R assigns a cost to each program in
the language L.

• The gradient function g : R → 2S returns an overapproximation
of the set of sketches in S that contain programs with lower cost
than a given value c ∈ R:

g(c) ⊇ {S ∈ S | ∃~h. κ(S[H := ~h]) < c} (1)

Given a specification φ, a metasketch m = 〈S, κ, g〉 defines an
instance of the optimal program synthesis problem (Def. 1), in
which the search space C is the union

⋃
S∈S

S of the search spaces
of each sketch in the set S, and the cost function is given by κ.

3.2 Properties of Metasketches

Metasketches bring new expressive power to (optimal) syntax-
guided synthesis in two ways. First, they can express richer can-
didate spaces than either sketches or context-free grammars alone:
unlike a classic sketch, a metasketch can capture an infinite space
of candidate programs, and unlike a context-free grammar, it can
express syntactic constraints on the search space that are context-
sensitive (see Section 3.3 for examples). Second, unlike other forms
of syntactic templates, metasketches describe both a search space
and a search strategy.

In particular, by specifying the candidate space as an ordered
set of sketches, the programmer provides a decomposition of the
problem into independent parts, as well as an order in which
those parts should be explored. At one extreme, if each sketch
S ∈ S is a concrete program with no holes, the metasketch is
an implementation of brute force search. Ordering these programs
according to AST depth yields a bottom-up brute force search, a
common synthesis technique [3, 42]. At the other extreme, if S
contains only a single finite sketch, the programmer is choosing to
solve the problem monolithically with the underlying synthesizer’s
search strategy, such as reduction to SMT [35, 39]. But there are
many other search strategies between these two extremes that are
also easily captured with a metasketch—for example, adaptive
concretization [14] randomly replaces some holes in a sketch with
concrete values, thus creating a family of sketches of roughly the
same complexity (as measured by the number of holes) that are
solved independently.

While the space component of a metasketch expresses a search
strategy, the gradient function expresses an optimization strategy—
essentially, a cost-based filter for the optimal synthesizer to apply to
the global search space once it finds some solution. For commonly
used cost functions (such as program length or the sum of instruction
latencies), it is easy to provide a function that precisely determines
whether a finite sketch contains a program with a cost lower than a
given value. Of course, this may be difficult or impossible for more

S = {Si | i ∈ N+}

� = {〈Si, Sj〉 | i ≤ j}

κ(P ) = i for P ∈ Si

g(c) = {Si | i < c}

Si = (lambda (x . . .)

(let* ([o1 (expr x . . .)]

. . .

[oi (expr x . . . o1 . . . oi−1)])

oi))

(expr e . . .) = (?? ((?? - ~) (?? e . . .))

((?? + - * & . . .) (?? e . . .) (?? e . . .))

(if (?? e . . .) (?? e . . .) (?? e . . .)))

Figure 2. A basic metasketch for superoptimization. This formu-
lation defines the search space to consist of all SYN programs in
SSA form. The sketches are ordered according to size. The cost
function κ : SYN → N measures the number of conditionals and
applications of built-in operators.

complex cost functions. For this reason, a metasketch only requires
g to be an overapproximation (Equation 1): it can return sketches
that have no solution with cost less than c, but to be sound, must not
filter out a sketch that does have such a solution. As a degenerate
case, the gradient function g(c) = S is a trivial overapproximation
that filters out no sketches. Using a trivial gradient will not affect the
correctness of the search, nor will it affect its optimality over finite
spaces, but as we discuss in Section 4, a more constrained gradient
is required to guarantee optimality over infinite spaces.

3.3 Examples

We illustrate the process of creating metasketches for two optimal
synthesis problems: superoptimization [12, 16, 21, 31, 43] and ap-
proximate computing [5, 9, 25]. Superoptimization is the problem
of finding the optimal sequence of instructions that implements a
given specification. Approximate computing allows small calcu-
lation errors in programs (such as image processing kernels) that
result in lower energy expenditure or execution time. A common
formulation of the approximate computing task boils down to an
optimal synthesis problem, in which the cost function encodes the
desired performance metric, and the specification constrains the
synthesized program to be sufficiently accurate with respect to the
reference program. We show three simple metasketches for these
applications. Despite their simplicity, however, our metasketches
capture enough insight to enable optimal synthesis of superoptimiza-
tion and approximation benchmarks that cannot be solved—even
ignoring optimality—with existing techniques (Section 5).

Superoptimization Figure 2 shows a basic superoptimization
metasketch, designed to find a shortest program in SSA form using
a given set of operators (in our case, all built-in SYN operators). The
space of all SSA programs cannot be expressed with a context-free
grammar, since SSA constraints are context-sensitive. However, it
is easily expressed as a set of sketches. Our metasketch assumes a
cost function κ that measures the number of conditionals and appli-
cations of built-in operators (that is, the original cost function from
Example 3). The search space consists of all finite SSA sketches
Si with i defined variables (whose names are canonical), and the
sketches are ordered according to how many defined variables they
contain. For our cost function, the number of defined variables in a
sketch completely determines the cost of all programs in that sketch,
which is reflected in the gradient function g.

The metasketch in Figure 2 encodes a simple iterative deepening
strategy for superoptimization, in which smaller search spaces
(corresponding to shorter programs) are explored first. However, this
encoding is inefficient: a sketch of size i includes programs that can



be trivially reduced to a shorter program by dead code elimination.
As a result, any search over the space defined by the sketch Si will
explore programs that are also covered by sketches Sj � Si. To
reduce overlap between sketches, we can amend our encoding of Si

to force all defined variables to be used at least once. To do so, we
simply lift the choice of the kth variable’s input arguments into fresh
variables ~vk, and add, for each oj , the following assertion to the body
of the let* expression:

∨
k>j,v∈ ~vk

oj = v. We call such assertions

(that only constrain the holes) structure constraints. In this case,
the structure constraints remove from a sketch of length i (a large
class of) programs that are also found in shorter sketches. We have
used the resulting metasketch to solve existing synthesis benchmarks
orders-of-magnitude faster than other symbolic synthesis techniques,
and in many cases as fast as the winner of the 2014 syntax-guided
synthesis competition [3].

Adaptive Superoptimization Superoptimization (e.g., [16, 31]) of-
ten involves richer cost functions than program length. For example,
we may want to use a static cost model of operator latencies, defined
by modifying the cost function κ from Example 3 to assign different
weights to built-in operators and to conditionals:

κ ((if e1 e2 e3)) = cif + κ(e1) + κ(e2) + κ(e3)

κ (x) = cx if x is a built-in operator

To obtain a gradient for this cost function, we simply change g from
Figure 2 to g(c) = {Si | i ∗ cmin < c}, where cmin is the lowest
operator cost according to κ. The new metasketch continues to
encode length-based iterative deepening, but given its cost function,
we can refine the search strategy by adding a second dimension to
the sketches: the set of operators that may appear in the program.

In particular, to bias the search toward exploring cheaper sub-
spaces first, we sort the available operators according to cost, and
then create a set of sketches Si,j where i is the length of the sketch,
as in Figure 2, and j specifies the prefix of the sorted operators used
to build expressions. The ordering on sketches now becomes the
lexicographical order over 〈i, j〉 (although other orders are possible
as well), and we add one more structure constraint to Si,j that forces
the j th operator to define at least one of the i variables, thus reducing
overlap between sketches along the instruction-set dimension. The
resulting adaptive superoptimization metasketch enables us to find
optimal, fast approximations of image processing kernels that cannot
be found tractably with other approximation techniques.

Piecewise Polynomial Approximation Typical targets for approx-
imate computing include small computational kernels that are in-
voked many times by an outer loop. These kernels often perform
expensive floating-point arithmetic using transcendental functions.
For example, the following C code shows a kernel that computes
the inverse kinematics of a robotic arm with two joints:

void inversek2j(float x, float y, float* th1, float* th2) {

*th2 = acos(((x*x) + (y*y) - 0.5) / 0.5);

*th1 = asin((y * (0.5 + 0.5*cos(*th2)) - 0.5*x*sin(*th2)) /

(x*x + y*y));

}

Existing techniques [9] for approximating kernels such as inversek2j
rely on hardware-accelerated neural networks, limiting their usabil-
ity by requiring custom-designed hardware. We present a metasketch
that implements the first software-based technique for approximat-
ing these kernels successfully, using only conditionals and fixed-
point addition and multiplication.

Our metasketch, shown in Figure 3, implements a piecewise
polynomial approximation of a mathematical function. The can-
didate space is decomposed along two dimensions: the number k
of pieces and the degree n of each polynomial. The sketch Sk,n

contains k − 1 unknown branching conditions defining k pieces,
and each branch contains a polynomial of degree n with unknown

S = {Sk,n | k ∈ N+, n ∈ N}

� = {〈Sk,n, Su,v〉 | k < u ∨ (k = u ∧ n ≤ v)}

κ(P ) = a ∗ k + b ∗ n for P ∈ Sk,n

g(c) = {Sk,n | a ∗ k + b ∗ n < c}

S1,n = (lambda (x1 . . . xm)

(poly
n

x1 . . . xm))

Sk>1,n = (lambda (x1 . . . xm)

(if (bnd x1 . . . xm)

(poly
n

x1 . . . xm) ; 1st piece

(...

(if (bnd x1 . . . xm)

(poly
n

x1 . . . xm)

(poly
n

x1 . . . xm) ; kth piece

)...)))

(bnd x1 . . . xm) = (and (< x1 (??)) . . . (< xn (??)))

(polyn x1 . . . xm) = (+ (* (??) (expt x1 n)) . . .

(* (??) (expt xm n)) . . .

(* (??) (expt x1 1)) . . .

(* (??) (expt xm 1)) . . .

(??))

Figure 3. A basic metasketch for piecewise polynomial approxima-
tion. The search space consists of all SYN programs that implement
a piecewise polynomial function with k pieces and the maximum
degree of n. The sketches are ordered lexicographically by 〈k, n〉.
The cost function κ : SYN → Z is a linear combination of k and n.
The function (expt x n) multiplies x by itself n times.

coefficients. Because our optimal synthesis problem involves ap-
proximating a function over a set of points sampled from its domain,
the cost κ minimizes a linear combination of pieces and degree, in
order to prevent overfitting to the sample set.

As in the case of (adaptive) superoptimization, we can reduce
overlap between the sketches in Figure 3 with structure constraints.
In particular, we force some piece in every Sk,n to include an
nth degree term with a non-zero coefficient, and we force the
branching conditions to differ in at least one term. In other words,
our constraints prevent sketches of size 〈k, n〉 from containing (a
class of) programs that belong to smaller sketches after constant
propagation and dead code elimination. Finally, we also break
symmetries in the Sk,n search space by ordering the constants in
the branching conditions, so that the ith bound for the argument
xi is no greater than its i + 1st bound. Our optimal synthesis
algorithm solves the resulting metasketch for several standard
approximation benchmarks, including inversek2j, for which it finds
an approximation with 16% error and 35× speedup.

4. Optimal Synthesis Algorithm

Our synthesis approach takes advantage of the metasketch abstrac-
tion by layering a global search atop individual local searches run-
ning in parallel. The global search executes the high-level strategy
encoded in a metasketch, and coordinates the activities of local
searches to satisfy the optimality requirement. Local searches exe-
cute an incremental form of counterexample-guided inductive syn-
thesis (CEGIS) [34], which can accept additional constraints during
the inductive synthesis loop. This section presents the global and
local search algorithms, characterizes their properties, and describes
performance-oriented implementation details.

4.1 Global Search

To solve a metasketch m = 〈S, κ, g〉, the global search coordinates
individual solvers operating on sketches drawn from the space S.
This coordination takes two forms. First, the global search uses the
ordered set S and the gradient function g to select which sketches



1: global τ ⊲ Number of parallel threads

2: function SYNTHESIZE(φ,m = 〈S, κ, g〉)
3: V ← ∅ ⊲ Completed sketches
4: P ∗, c∗ ← ⊥,∞ ⊲ Optimal program and cost
5: R ← TAKE(S, τ) ⊲ Remove first τ sketches from S
6: for all S ∈ R do

7: η ← VARSFORHOLES(S) ⊲ Logical variables for holes
8: x← VARSFORINPUTS(S) ⊲ Logical variables for inputs
9: ψ ← λe.λa.φ(a, TOSMT(S[H := e](a)))

10: ∃∀SOLVEASYNC(S, ∃η.∀x.ψ(η, x)) ⊲ Start solving S

11: whileR 6= ∅ do

12: S, result , h← WAITFORRESULT(R)
13: P ← S[H := h]
14: t← 0 ⊲ Number of new sketches to launch
15: if result = SAT ∧ κ(P ) < c∗ then ⊲ New optimal solution
16: P ∗, c∗ ← P, κ(P )
17: S ← g(c∗)
18: for all S ∈ R do

19: if S ∈ S then ⊲ Allow S to continue
20: ϕ← λe.λa.TOSMT(κ(S[H := e])) < c∗

21: SENDCONSTRAINT(S, ϕ)
22: else ⊲ Prune S
23: KILLSOLVER(S)
24: R ← R \ {S}; V ← V ∪ {S}; t← t+ 1

25: else if result = UNSAT then ⊲ No (more) solutions to S
26: KILLSOLVER(S)
27: R ← R \ {S}; V ← V ∪ {S}; t← t+ 1

28: if t > 0 then

29: N ← TAKE(S \ (R∪ V), t)
30: for all S ∈ N do

31: η ← VARSFORHOLES(S)
32: x← VARSFORINPUTS(S)
33: ψ ← λe.λa.φ(a, TOSMT(S[H := e](a)))∧

TOSMT(κ(S[H := e])) < c∗

34: ∃∀SOLVEASYNC(S, ∃η.∀x.ψ(η, x))

35: R ← R∪N
36: return P ∗

Figure 4. The global optimal synthesis algorithm SYNTHESIZE

takes as input a specification φ and a metasketch 〈S, κ, g〉, and

finds a program P ∈
⋃

S∈S
S that satisfies φ and minimizes κ. The

synthesis runs τ local solvers (∃∀SOLVEASYNC), each executing in
parallel on its own thread, and coordinates their search activities by
sharing constraints.

to send to individual solvers. The total order � on S defines the
order in which to search sketches; the search order can significantly
change the performance of the synthesis procedure, as Section 4.4
discusses. The gradient function g filters S once a satisfying solution
is found to only search sketches with potentially cheaper solutions.
Second, the global search receives candidate solutions from the
individual solvers as they execute. The global search broadcasts
information about these candidates to all local solvers, focusing
their search efforts on cheaper solutions.

Figure 4 shows the global search algorithm SYNTHESIZE. The
global search runs τ local solvers in parallel, each executing
∃∀SOLVEASYNC on a logical encoding of the synthesis prob-
lem for a particular sketch S from S. Our algorithm assumes the
existence of a procedure (as provided by, for example, Sketch [35]
or ROSETTE [40]) that can encode the application of an arbitrary
program from a sketch as a term in the theory T . A local solver that
completes a search with the sketch S returns a tuple 〈S, result , h〉
of results to the global search on line 12. The variable result is SAT
if there is a completion of the sketch S that satisfies φ, or UNSAT
otherwise. If result is SAT, the program S[H := h] is a completion
of S that satisfies φ; if result is UNSAT, h is ⊥.

If a local solver produces a new solution that is the best seen so
far (line 15), the global search filters S with the gradient function g

1: function ∃∀SOLVEASYNC(id, ∃η. ∀x. ψ(η, x))
2: GS ← new IncrementalSMTSolver()
3: y ← VALUESFOR(x) ⊲ Arbitrary initial binding for x
4: Z ← {y} ⊲ CEGIS counterexamples
5: Ψ← {ψ} ⊲ All constraints
6: ASSERT(GS , ψ(η, x := y)) ⊲ Assert that ψ holds for y
7: while true do

8: block ← True
9: result , h← SOLVE(GS) ⊲ Solve for η

10: if result = SAT then ⊲ h is a candidate model
11: result , z ← VERIFY(Ψ, η := h, x)
12: if result = SAT then ⊲ Candidate is incorrect
13: ASSERT(GS ,

∧
ϕ∈Ψ

ϕ(η, x := z))

14: Z ← Z ∪ {z} ⊲ z is a counterexample
15: block ← False ⊲ Do not wait for more constraints
16: else ⊲ Candidate is valid; send to global search
17: SENDRESULT(id, SAT, h)

18: else ⊲ Ψ is not valid
19: SENDRESULT(id,UNSAT,⊥)
20: return

21: if block ∨ a constraint has been received then

22: ϕ← RECEIVECONSTRAINT()
23: ASSERT(GS ,

∧
z∈Z ϕ(η, x := z))

24: Ψ← Ψ ∪ {ϕ}

25: function VERIFY(Ψ, η := h, x)
26: GV ← new SMTSolver()
27: ASSERT(GV ,

∨
ϕ∈Ψ

¬ϕ(η := h, x))

28: return SOLVE(GV ) ⊲ Solve for x

Figure 5. The local synthesis algorithm ∃∀SOLVEASYNC takes as
input a constraint ψ over a list of existentially quantified variables
η and universally quantified variables x. The algorithm is an
incremental form of counterexample-guided inductive synthesis
(CEGIS) that accepts new constraints within the CEGIS loop. These
new constraints are conjoined to ψ in the order in which they
are received. ∃∀SOLVEASYNC emits models for η that make the
resulting conjunctions valid. The search terminates if the current
conjunction becomes unsatisfiable.

(line 17). The gradient function restricts S to include only sketches
that may contain programs cheaper than the new best cost c∗. The
global search then announces c∗ to all currently running solvers as
a new constraint in theory T . Consequently, the application of κ to
an arbitrary program from S needs to be reducible to a term in T
(as mentioned in Section 2). The local solvers use this constraint to
prune their candidate space to include only programs cheaper than
c∗. As an optimization, the global search can also kill local solvers
that are no longer in the set S after applying the gradient function.
This is sound because if a gradient function g(c∗) filters out a sketch
S, then by Equation (1), the sketch S has no solutions with cost less
than c∗. Therefore, when the local search for S receives the new
constraint that its cost be less than c∗, it will return UNSAT.

If a local solver produces no solution (line 25), it is marked as
completed and new solvers are launched on new sketches from S. In
addition to the specification φ, these new solvers take an additional
constraint that requires their solutions to be cheaper than the best
known solution so far.

4.2 Local Searches

The global search invokes a local search procedure ∃∀SOLVEASYNC

(Figure 5) on individual sketches S from the space S of the metas-
ketch. The local search implements an incremental version of
the CEGIS [35] algorithm for solving ∃η.∀x.ψ(η, x) synthesis
queries—that is, for finding a binding h for η that makes the for-
mula ∀x.ψ(η := h, x) valid. The classic CEGIS algorithm uses
one (incremental) solver instance, called the synthesizer, to search
for an h that is correct for a set Z of values for x, by checking the



satisfiability of the formula ∃η.
∧

z∈Z ψ(η, x := z). If the synthesis
formula is satisfiable, another solver instance, called the verifier,
checks the satisfiability of the formula ∃x.¬ψ(η := h, x), looking
for a value of x, called a counterexample, that invalidates the candi-
date solution h. If such a value exists, it is added to Z. This loop
repeats until either the verifier returns UNSAT, indicating that h is
valid, or the synthesizer returns UNSAT, indicating that there are no
candidates left.

The ∃∀SOLVEASYNC algorithm extends CEGIS to accept ad-
ditional constraints inside of the CEGIS loop. After each iteration
of the CEGIS loop, our incremental algorithm can accept a new
constraint ψ′(η, x) (line 22) to obtain a new synthesis problem
∃η.∀x.ψ(η, x) ∧ ψ′(η, x). This constraint is added to the set of
constraints seen so far (line 24), and asserted to the synthesizer for
each counterexample collected so far (line 23). The synthesizer then
searchers for a model of the new problem (line 9), and if the result
is a valid solution (line 11), ∃∀SOLVEASYNC emits that solution to
its output channel (line 17). As in classic CEGIS, an invalid solution
leads to a counterexample, which is added to Z (lines 12–14). If
there is no model for the problem, the search terminates (lines 19–
20). When the algorithm satisfies all the constraints it has received
so far, it blocks until it receives new constraints.

4.3 Characterization

We now show that the global search SYNTHESIZE is sound (it returns
only correct programs), complete (it returns a correct program if
one exists), and optimal (it returns the cheapest correct program).
To start, we prove soundness and completeness of ∃∀SOLVEASYNC.
Next, we use the soundness of ∃∀SOLVEASYNC to establish the
soundness of SYNTHESIZE. We then observe that SYNTHESIZE

is not guaranteed to terminate on an arbitrary metasketch with an
infinite search space. To prove completeness and optimality, we
therefore introduce compact metasketches (Def. 3), which place a
simple compactness requirement on the gradient function g. This
requirement is true of all metasketches with finite search spaces, and,
in practice, is easy to satisfy for infinite search spaces as well. But
SYNTHESIZE is still useful for non-compact metasketches: because
it will always discover a solution if one exists (a property we call
online completeness), an implementation that emits intermediate
results (on line 16 of Figure 4) can be used to find the best solution
within a given time budget.

Local Search. The global search invokes ∃∀SOLVEASYNC on the
∃∀ synthesis query for a given sketch S with respect to the correct-
ness specification φ. To prove that the global search is sound, we
need to show simply that no solution produced by ∃∀SOLVEASYNC

violates φ (Lemma 1). Completeness of ∃∀SOLVEASYNC is more
subtle, however. Unlike classic CEGIS, the incremental CEGIS
explicitly filters out some solutions satisfying φ by receiving ad-
ditional constraints. We prove completeness of ∃∀SOLVEASYNC

in the case where it has received a set of constraints Ψ, but then
receives no further constraints until it sends a result (Lemma 3).
This completeness result is sufficient for proving completeness of
the global search on compact metasketches.

Lemma 1 (Soundness of ∃∀SOLVEASYNC). Let ∃η. ∀x. ψ(η, x)
be the problem with which ∃∀SOLVEASYNC is initialized. If the
algorithm emits a result of the form 〈id, SAT, h〉, then ∀x. ψ(η :=
h, x) is valid modulo T .

Proof. If ∃∀SOLVEASYNC sends a result 〈id, SAT, h〉 from line 17
in Figure 5, then the verification on line 11 must have returned
UNSAT. By the definition of VERIFY, this means that ∄z.

∨
ϕ∈Ψ

¬ϕ(η := h, z), and therefore that ∀z.
∧

ϕ∈Ψ
ϕ(η := h, z). Since

ψ ∈ Ψ and additional constraints in Ψ can only rule out solutions,
we have that ∀x. ψ(η := h, x) is valid modulo T .

Lemma 2 (∃∀SOLVEASYNC loop invariant). At line 8 of Fig-
ure 5, the state of the incremental solver GS is the assertion∧

ϕ∈Ψ

∧
z∈Z ϕ(η, x := z).

Proof. By induction on loop iterations. On loop entry, Ψ = {ψ}
and Z = {y}, and the only assertion is ψ(η, x := y). Now suppose
the state is

∧
ϕ∈Ψ

∧
z∈Z ϕ(η, x := z) at the start of the current

iteration. The iteration can add only a single new counterexample
z′; if it does, it will assert

∧
ϕ∈Ψ

ϕ(η, x := z′) (line 13), and set

Z′ = Z ∪ {z′}; if not, it will set Z′ = Z. (line 14) Then the
iteration can add a single new constraint ϕ′; if it does, it will assert∧

z∈Z′ ϕ
′(η, x := z) (line 23) and set Ψ′ = Ψ ∪ {ϕ′} (line 24); if

not, it will set Ψ′ = Ψ. Therefore, at the start of the next iteration,
the assertion store contains

∧
ϕ∈Ψ′

∧
z∈Z′ ϕ(η, x := z).

Lemma 3 (Completeness of ∃∀SOLVEASYNC). Let ∃η. ∀x. ψ(η, x)
be the problem with which ∃∀SOLVEASYNC is initialized. Suppose
that ∃∀SOLVEASYNC receives constraints ϕ1, . . . , ϕk, such that
Ψ = {ψ,ϕ1, . . . , ϕk}. If no more constraints are received, and
there exists some assignment h such that ∀x.

∧
ϕ∈Ψ

ϕ(η := h, x)
is valid modulo T , then ∃∀SOLVEASYNC will eventually send a
SAT result.

Proof. Suppose we are at line 8 of Figure 5, when the previous
iteration of the loop received the last messageϕk. LetZ′ be the setZ
of counterexamples at this point. We now have a set of specifications
Ψ that will not change again. By Lemma 2, the accumulated state of
GS is the assertion

∧
ϕ∈Ψ

∧
z∈Z′ ϕ(η, x := z). From this point, the

algorithm reduces to classic CEGIS, which is sound and complete
on bounded input domains.

Global Search. The correctness of the global search depends on
the soundness and completeness of the local search. We first show
that SYNTHESIZE is sound for the classic synthesis problem.

Theorem 1 (Soundness of SYNTHESIZE). Let m = 〈S, κ, g〉 be a
metasketch and φ a specification. If SYNTHESIZE(φ,m) returns a
program P , then P is a solution to the classic synthesis problem;
that is, ∀x. φ(x, JP K(x)) is valid modulo T .

Proof. Follows immediately from Lemma 1.

As stated, the SYNTHESIZE procedure is not complete: it is
not guaranteed to return a solution if one exists, because it is not
guaranteed to terminate. The issue is that both the space S and the
sets returned by the gradient function g may be countably infinite.
However, we can show that SYNTHESIZE will always discover
a solution if one exists; that is, SYNTHESIZE is a semi-decision
procedure. We call this property online completeness.

Theorem 2 (Online completeness of SYNTHESIZE). Let m =
〈S, κ, g〉 be a metasketch and φ a specification. Suppose that there

exists a program P ∈
⋃

S∈S
S in the search space defined by the

metasketch such that ∀x. φ(x, JP K(x)) is valid modulo T . Then
at some point during execution, the call to WAITFORRESULT on
line 12 returns a tuple with result = SAT.

Proof. Because P ∈
⋃

S∈S
S, there exists a sketch S ∈ S such

that P ∈ S. Then there are three possibilities for how SYNTHESIZE

treats the sketch S, all of which guarantee that the global search
receives a SAT message:

• S is launched by a call to ∃∀SOLVEASYNC which then re-
ceives no constraint messages from the global search. Then by
Lemma 3, because S is satisfiable, the global search eventually
receives a SAT message with the sketch S.



• S is launched by a call to ∃∀SOLVEASYNC and receives at least
one constraint message from the global search. But constraint
messages are only sent from line 21 of Figure 4, which is only
reachable when WAITFORRESULT receives a SAT message.
• If S is never launched, it must have been removed from S. This

removal can only happen on line 23 of Figure 4, which is only
reachable when WAITFORRESULT receives a SAT message.

Online completeness is useful because an implementation of
SYNTHESIZE could emit intermediate results while continuing its
search. As results in Section 5.4 show, SYNTHESIZE spends most of
its execution time proving optimality of a candidate program, and
so emitting intermediate results can make synthesis much faster at
the expense of a weaker optimality guarantee. Online completeness
ensures that SYNTHESIZE will always emit an intermediate solution
if any solutions exist.

Compact Metasketches The global search is not guaranteed to ter-
minate on an arbitrary metasketch, as explained above. To guarantee
termination, we introduce an additional compactness constraint on
the gradient function of a metasketch. This constraint is sufficient to
prove that SYNTHESIZE is complete and optimal.

Definition 3 (Compact Metasketch). A compact metasketch is a
metasketchm = 〈S, κ, g〉 satisfying Definition 2 with the additional
property that for all c ∈ R, g(c) is finite.

Theorem 3 (Completeness of SYNTHESIZE). Let m = 〈S, κ, g〉
be a compact metasketch and φ a specification. Suppose that there

exists a program P ′ ∈
⋃

S∈S
S in the search space defined by the

metasketch such that ∀x. φ(x, JP ′K(x)) is valid modulo T . Then
there exists a program P such that SYNTHESIZE(φ,m) returns P .

Proof. By Theorem 2, there is at least one sketch S and program P
such that WAITFORRESULT will return the message 〈SAT, S, P 〉.
Let this be the first such SAT message. Then c∗ = ∞, and so line 17
will set S ′ = g(κ(P )). Since m is a compact metasketch, S ′ is
finite, and since line 17 is only called when a new cost is smaller
than c∗, no new sketches can be added to S ′. Therefore there are
only finitely many sketches remaining to explore. Each sketch has
only finitely many solutions and, whenever a sketch returns a SAT
message, it either receives a new constraint ruling that solution out
(if the solution it returned has cost κ(P ) < c∗), or a constraint ruling
that solution out is already waiting on its queue (if κ(P ) ≥ c∗).
Therefore, local solvers can only return finitely many more solutions,
after which they will return UNSAT and be added to V . Eventually,
the set S \ (R ∪ V) of unexplored sketches will be empty, the
running sketches will return UNSAT, and SYNTHESIZE will return
a program.

Theorem 4 (Optimality of SYNTHESIZE). Let m = 〈S, κ, g〉
be a compact metasketch and φ a specification. Suppose that
SYNTHESIZE(φ,m) returns a program P with cost c. Then P is

an optimal program: there is no program P ′ ∈
⋃

S∈S
S such that

∀x. φ(x, JP ′K(x)) is valid modulo T , and κ(P ′) < c.

Proof. We proceed by contradiction. Suppose SYNTHESIZE returns
P with κ(P ) = c, but there is a sketch S′ ∈ S that contains a correct
program P ′ with κ(P ′) = c′ < c. Since the assignment to c∗ is
guarded by line 15, c∗ can only decrease, and by assumption, will
never be smaller than c. By the definition of the gradient function,
the sketch S′ is never filtered out by line 17, since c′ < c ≤ c∗.
Hence, when SYNTHESIZE receives a SAT message with a sketch
S and cost c, either a local search for S′ is still running, or it has
not started. In both cases, the local search for S′ will receive the

constraint TOSMT(κ(S[H := e])) < c (at line 21 or at line 34),
and it will receive no further constraints (since we assumed that
SYNTHESIZE returns a program with cost c). By Lemma 3, the
local search will run to completion and will be satisfiable, returning
a correct solution P ′ with cost κ(P ′) < c. This solution will be
received by SYNTHESIZE on line 12, contradicting the assumption
that SYNTHESIZE returns P .

4.4 Implementation

We implemented our optimal synthesis approach in a new tool we
call SYNAPSE, built on top of the ROSETTE language [39, 40], which
extends Racket with features for program synthesis and verification
using an underlying SAT or SMT solver [8, 41]. Here we briefly
highlight some implementation details.

Sharing Counterexamples. The incremental CEGIS algorithm in
Figure 5 can receive new constraints after each iteration. But the
algorithm can be extended to also receive other messages. SYNAPSE

exchanges CEGIS counterexamples between different local solvers
in an effort to speed up each search. When a local solver sends a SAT
or UNSAT message, it also includes the set Z of counterexamples
it used to generate that result. The global search broadcasts the new
counterexamples it receives to all running solvers, and maintains a
set of all counterexamples that it provides to new local solvers. This
optimization is sound because it does not affect the VERIFY check
in ∃∀SOLVEASYNC. SYNAPSE uses the shared counterexamples
only to accelerate the VERIFY check in ∃∀SOLVEASYNC, by first
checking that the assertion on line 27 is not trivially invalidated
by any of the existing counterexamples. This optimizations allows
solvers to reduce the number of solver queries. We measure the
effect of this optimization in Section 5.5.

Timeouts. While individual sketches are finite and therefore local
searches will terminate, the queries made by local searches can take
too long to be practical. We control this effect by adding a timeout
parameter to ∃∀SOLVEASYNC. Once the timeout expires, the local
solver sends a timeout message to the global search. The global
search treats a timed-out search in the same way as an unsatisfiable
one: it kills the local solver and launches the next sketch.

Timeouts weaken the optimality guarantee that SYNAPSE pro-
vides. A solution output by SYNAPSE is only guaranteed to be
optimal among those sketches that did not time out. In practice, the
metasketches we designed were unlikely to contain cheaper solu-
tions in sketches that timed out, and extending the time out by an
order of magnitude did not change our results.

Search Order. The completeness of SYNAPSE does not depend
on the order � of the set of sketches S in a metasketch. The only
requirement is that the order is total (as Definition 2 states), so that
for every sketch S ∈ S, SYNTHESIZE eventually either tries to solve
that sketch, or prunes it by finding a cheaper solution.

However, the search order can have a significant effect on
performance. In the example metasketch designs in Section 3.3,
we were careful to select a search order � that preferred simpler
sketches to more complex ones. This order avoids wasted work on
complex sketches that are likely to time out. It also best exploits the
counterexample sharing optimization described above, as smaller
sketches quickly generate a set of counterexamples that later local
searches can use. We found the Cantor and Szudzik orders [19, 38]
to be particularly effective.

5. Evaluation

To demonstrate that SYNAPSE effectively solves optimal synthesis
problems expressed as metasketches, we evaluated it on four sets
of benchmarks drawn from existing work. We sought to answer the
following questions:



1. Is SYNAPSE a practical approach to solving different kinds of
synthesis problems? In particular, can it solve optimal synthesis
problems? Do metasketches also enable more effective classic
synthesis compared to existing syntax-guided synthesizers?

2. Does the fragmentation of the search space by a metasketch
translate into parallel speedup?

3. Is online completeness empirically useful? What proportion of
SYNAPSE’s run time is spent finding an optimal solution versus
proving its optimality?

4. How beneficial are our optimizations at the level of metasketches
(realized through structure constraints) and within the implemen-
tation (realized through counterexample sharing)?

5. Can SYNAPSE reason about dynamic cost functions; that is, cost
functions that execute the synthesized program?

This section presents our benchmarks, experiments, and results. The
results provide affirmative answers to all five questions. SYNAPSE,
our benchmarks, and our experimental data are available online3

and have been artifact evaluated.

5.1 Benchmarks

Table 1 shows the benchmarks used in our evaluation. The bench-
mark problems come from two sources: the 2014 and 2015 syntax-
guided synthesis (SyGuS) competitions [3], and common approx-
imate computing benchmarks [9]. We selected 67 problems from
four categories of the SyGuS competition, ranging in difficulty from
easy (i.e., solvable by most solvers) to hard (i.e., unsolvable by
most solvers). The approximate computing benchmarks consist of 7
programs that cannot be approximated with existing software-based
techniques. We developed metasketches for each set of problems.
Section 3.3 described some of these metasketches, and we describe
the rest below.

Hacker’s Delight. The first category contains 20 bit-manipulating
problems, used as superoptimization benchmarks in previous syn-
thesis work [12, 31], appearing in two different difficulties, d0 and
d5. The metasketch for a d0 problem includes only the bitvector
operators that appear in the reference solution for that problem. The
metasketch for d5 problems includes all bitvector operators.

Array Search. The second category contains 14 array search prob-
lems from the SyGuS competition [3]. The problem arraysearch-n
is to synthesize a program that returns the index of a search key in a
sorted array of size n, or zero if the key is not present in the array.
The most efficient solution to these problems implements binary
search. The metasketch for array search problems is an infinite set of
sketches generated by two mutually recursive functions that encode
SyGuS grammars for integer and boolean expressions. Each sketch
in this metasketch is parameterized by the depth of the deepest
integer and boolean expressions, respectively.

Conditional Integer Arithmetic (CIA). The third category con-
tains 13 conditional integer arithmetic problems4 new to the 2015
syntax-guided synthesis competition [4]. Each problem involves
synthesizing a program from a grammar that includes the program
inputs; constants 0, 1, and 3; integer addition and subtraction; and
the qm operation

(define (qm a b)

(if (< a 0) b a))

The metasketch for CIA problems is an infinite set of sketches
generated by this grammar, with one sketch per depth of production

3 http://synapse.uwplse.org
4 The conditional integer arithmetic benchmarks are labeled qm in the SyGuS
competition dataset.

from the grammar. Several of the CIA benchmarks were unsolved by
any solver in the SyGuS competition; we present only those solved
by at least one SyGuS solver or by SYNAPSE.

Parrot. The fourth category contains 7 problems drawn from the
approximate computing literature [9]. The specification for these
problems allows the synthesized program to differ from the reference
program by a given application-specific quality bound. We use
two metasketches for the Parrot benchmarks: piecewise polynomial
approximation (for benchmarks that use transcendental functions)
and adaptive superoptimization (for all other benchmarks).

Methodology. We performed all experiments on an 18-core Intel
Xeon E5-2666 CPU at 2.9 GHz, with 60 GB of RAM. For SyGuS
benchmarks, we timed out each metasketch after one hour, for
consistency with the SyGuS competition setup [3]. For Parrot
benchmarks, we did not use a timeout for any metasketch. In
both cases, individual sketches within a metasketch were timed
out after 15 minutes. Section 4.4 describes the effect of timeouts
on SYNAPSE’s optimality guarantee; we found that extending the
individual sketch timeout by an order of magnitude did not discover
cheaper solutions for any problem. All timing results are wall-
clock times for the entire SYNAPSE execution. Where speedups
are presented, they are aggregated over all benchmarks in a category
before being normalized to the relevant baseline [33].

5.2 Is SYNAPSE a practical approach to solving different
kinds of synthesis problems?

To evaluate the effectiveness of SYNAPSE as a generic synthesis
engine, we applied it to all of our benchmarks in sequential mode—
that is, running only a single local search at a time. This gives a
baseline for comparison against existing syntax-guided synthesis
solvers, which are single-threaded. Figure 6 shows the sequential
solving performance of SYNAPSE on our benchmarks.

For the Hacker’s Delight benchmarks at difficulty d0, SYNAPSE

solves all 20 problems. The performance is competitive with results
from the syntax-guided synthesis (SyGuS) competition [3], showing
that metasketches do not introduce additional overhead for easy
problems. However, SYNAPSE also solves problem 20, which none
of the SyGuS solvers could solve in either 2014 or 2015.

For Hacker’s Delight benchmarks at difficulty 5, SYNAPSE is
able to solve 18 of the 20 problems within a one hour timeout.
This result is better than other SMT-based SyGuS solvers: the
symbolic solver in 2014 [2, 12] times out on all 20 problems, the
Sketch-based [35] solver in 2014 solves only problems 1–8, and
the CVC4-based solver that won the 2015 competition [30] cannot
solve problems 14 or 15. The winner of the SyGuS competition in
2014 used an enumerative brute force strategy, and solved the same
18 problems that SYNAPSE solves in comparable time (same order
of magnitude).

SYNAPSE solves all Array Search problems. In comparison,
the best SyGuS solver on these problems in 2014 was the Sketch-
based [35] solver, which could solve these problems only up to
length 7. The enumerative solver, which won the syntax-guided
synthesis competition, could only solve lengths 2 and 3. In 2015,
the CVC4-based solver [30] also solved all Array Search problems.
However, its solutions were highly non-optimal: for arraysearch-15,
SYNAPSE produces the expected binary search solution with AST
depth 5 and size 349 bytes, while CVC4 produces a solution with
AST depth 45 and size 7.1 MB.

SYNAPSE is also able to solve all seven Parrot problems. We
attempted to solve the Parrot benchmarks using SyGuS solvers,
Sketch [35], and the Stoke stochastic superoptimizer [31] without
success. We encoded the adaptive superoptimization Parrot problems
in the SyGuS benchmark format and in Sketch. Only the CVC4-
based SyGuS solver [30] and Sketch produced solutions for these

http://synapse.uwplse.org


Benchmark Suite Problems Source Problem Description Metasketch Cost Function

Array Search 14 SyGuS’14 [3] Search a sorted array of size n for a
given element and return its index

Array programs Expression depth

Conditional Integer
Arithmetic (CIA)

13 SyGuS’15 [4] Integer programs that use complex
branching structure

Integer programs Expression depth

Hacker’s Delight d0 20 SyGuS’14 [3] Bit-manipulating programs, with
sketches in the metasketch contain-
ing only the minimal set of bitvec-
tor operators necessary to imple-
ment the reference program.

Superoptimization Program length

Hacker’s Delight d5 20 SyGuS’14 [3] Bit-manipulating programs, with
sketches in the metasketch contain-
ing all operators from the theory of
bitvectors.

Superoptimization Program length

Parrot 7 Parrot [9] Approximate computing kernels:
kmeans and sobel (×2 convolution
matrices)

Adaptive super-
optimization

Static cost model

Approximate computing kernels:
fft (×2 outputs) and inversek2j
(×2 outputs)

Piecewise
polynomial
approximation

Pieces + Degree

Table 1. The benchmarks used in our evaluation. For each benchmark suite, we wrote a metasketch whose set of sketches together form the
relevant search space, as described in Section 3.3.

Array Search CIA Hacker's Delight d0 Hacker's Delight d5 Parrot
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Figure 6. Sequential solving performance for all benchmarks. Asterisks indicate benchmarks that timed out after one hour.

problems, but the solutions failed to meet the specification. The
other publicly-available SyGuS solvers did not return solutions
in 4 hours, which is the maximum time taken by SYNAPSE to
solve any Parrot benchmark. The piecewise polynomial Parrot
problems are not expressible in the SyGuS format, because they
require synthesizing (arbitrary numeric) constants. Sketch supports
synthesis of constants, but it was unable to solve any of these
problems in 4 hours. Implementing the benchmarks in C and passing
them to Stoke also resulted in no solutions.

5.3 Does the fragmentation of the search space by a
metasketch translate into parallel speedup?

To evaluate the benefits of coarse-grained parallelism exposed by
metasketches, we applied SYNAPSE to our benchmarks using 2,
4, and 8 threads. Figure 7 shows the resulting parallel solving
performance. We omit Hacker’s Delight at difficulty d0 because
these small benchmarks do not benefit from parallelization. Results
are speedups in total execution time aggregated over all benchmarks
in a category, excluding benchmarks that timed out at any number
of threads.

SYNAPSE realizes substantial parallel speedups for the Parrot
problems, which are the hardest synthesis problems in our bench-
mark suite. These speedups are similar to or better than recent work
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Figure 7. Parallel solving performance for all benchmarks except
Hacker’s Delight d0 (which are too small to benefit). Parrot sees
substantial parallel speedup. Hacker’s Delight d5 sees speedup up to
four threads, but then a single local search dominates solving time.
Array Search and Conditional Integer Arithmetic benchmarks see
minimal speedup because most solving time is spent on a single
local search.
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Figure 8. Search progress for the sobel-y benchmark on 4 threads.
When solutions are discovered, the size of the remaining search
space to explore drops significantly. SYNAPSE finds the optimal
solution after 112 s, but must spend an additional 1,628 s proving it
optimal.

in parallel program synthesis [14]. For Hacker’s Delight problems,
the parallel speedups are significant up to four threads, but eventu-
ally a single local search (which executes sequentially) becomes the
bottleneck. For Array Search and Conditional Integer Arithmetic
problems, parallel speedups are minimal, because most sketches
early in the search order are quickly found to be unsatisfiable, so
solving time is again dominated by a single sequential local search.

5.4 Is online completeness empirically useful?

Unlike a classic program synthesizer, which can terminate as soon
as it discovers a solution, an optimal program synthesizer such as
SYNAPSE must also prove the optimality of a candidate solution.
Metasketches provide an abstraction that allows this search to
terminate despite exploring an infinite space of candidate programs.
But the proof of optimality can still consume a significant portion
of the search time: the gradient function of a metasketch returns
sketches that may contain cheaper candidate programs, and so the
search can spend significant amounts of time searching sketches that
do not contain cheaper solutions.

Figure 8 shows the progress over time of a search for the sobel-y
Parrot benchmark. The x-axis is the time since starting the search,
and the y-axis plots both the number of sketches completed and
remaining in the search, and the cost of the best solution so far.
Note that the number of sketches remaining is infinite before a first
solution is found. The search discovers the optimal solution after
112 s with cost 6. However, the gradient function returns 56 sketches
that may contain solutions of lower cost. The search spends another
1,628 s exploring each of these sketches to prove they do not contain
such solutions. The slope of the sketches-remaining line in Figure 8
shows that many of these sketches can be quickly pruned, due to
the added constraint they receive from the global search that their
solutions must be cheaper than 6. For some sketches, however, the
local search is unable to quickly deduce unsatisfiability despite this
added constraint. These sketches dominate the search time.

5.5 How beneficial are our metasketch and implementation
optimizations?

SYNAPSE admits two optimizations beyond existing CEGIS-based
solvers, as Section 4.4 describes. First, the global search can ex-
change counterexamples between local searches, which can improve
their performance by reducing the number of calls to the verifier. Sec-
ond, a metasketch can impose structure constraints on the individual
local searches, which can rule out some semantically-equivalent
programs from being considered by multiple searches.

None
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Figure 9. Effect of optimizations on SYNAPSE’s performance for a
single-threaded search. SYNAPSE can exchange counterexamples
(CEXs) between local searches, and can impose structure constraints
that prevent different local searches traversing some semantically-
equivalent programs.

Figure 9 shows the effect of these optimizations for a single-
threaded search. Results are speedups in total execution time aggre-
gated over all benchmarks in a category, excluding benchmarks that
timed out in any configuration. Both Hacker’s Delight and Array
Search benchmarks see minimal benefits from the optimizations,
because they consist mainly of sketches that are easily proven un-
satisfiable. The Parrot problems benefit significantly (50%) from
structure constraints, because the sketches in the Parrot metasketches
contain significant semantic overlap. The Conditional Integer Arith-
metic benchmarks, on the other hand, benefit significantly (3×)
from counterexample exchange.

5.6 Can SYNAPSE reason about dynamic cost functions?

Metasketches place only very general restrictions on cost functions:
the application of the cost function to a program must reduce
to a term in a decidable theory (as discussed in Section 2). This
restriction allows for static cost functions, such as static instruction
cost models, but also for dynamic cost functions that execute the
synthesized program to establish its cost. We illustrate SYNAPSE’s
support for a variety of dynamic cost functions with three small
examples.

Least-Squares Regression. Least squares regression fits a model
function f to a data set {xi, yi} by minimizing the objective
function

∑n

i=1
(yi − f(xi))

2. We implemented a modified version
of the piecewise polynomial metasketch presented in Section 3.3
to perform least-squares regression. Each sketch in this metasketch
is a piecewise polynomial with a fixed number of pieces and
fixed degree. We defined the cost function to be the least-squares
objective function, which is dynamic because it requires evaluating
the synthesized program f at each xi in the data set. The metasketch
uses the trivial gradient function g(c) = S, and because this
metasketch is not compact (Def. 3), we provided a finite set S
of sketches. We used as a data set 30 samples of the polynomial

p(x) = x3 − 8x2 + x− 9

from the interval x ∈ [−1, 10] with added Gaussian noise (σ = 5).
SYNAPSE synthesized the polynomial

q(x) = x3 − 8x2 + x− 7

in 30 seconds as the optimal (integer) solution to this problem.
SYNAPSE also explored the other sketches in the metasketch, which
correspond to other possible models for the data (including linear,
quadratic, and quartic functions), but correctly found the cubic
function to be the best fit.
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Figure 10. The sketch for a neural network is an SSA-form imple-
mentation of its evaluation function, with holes for each weight. In
this example, the input nodes are the grayscale values of each pixel
in the input image, and the output is a binary classification.

Worst-Case Execution Time. The superoptimization metasketches
in Section 3.3 used static measures of program performance. The
metasketch abstraction also supports dynamic measures, such as
worst case execution time. To illustrate the effects of dynamic and
static measures on the results of optimal synthesis, we selected
problem 13 from the Hacker’s Delight benchmark suite, which
implements the sign function for 32-bit integers. We created two
metasketches for this benchmark: 〈S, κs, g〉 and 〈S, κd, g〉, where
S is a finite set of sketches and g is the trivial gradient g(c) = S.
Our sketches were drawn from a subset of the SYN grammar that
includes conditional expressions and a minimal set of operators
needed to implement benchmark 13. We defined κs to be an additive
static cost function (as in Example 3 of Section 2) that assigns cost
2 to conditional expressions and cost 1 to all other expressions, in-
cluding constants and variables. On the other hand, κd is a dynamic
cost function that measures the worst-case execution time (over all
feasible paths) using the same costs for SYN expressions as κs. We
applied SYNAPSE to both metasketches and obtained two different
optimal programs.

The static metasketch 〈S, κs, g〉 produces the reference imple-
mentation for benchmark 13 as the optimal solution (with cost 8):

(define (sgn-s x)

(| (>>> (- x) 31) (>> x 31)))

The dynamic metasketch 〈S, κd, g〉, on the other hand, produces a
different optimal solution (also with cost 8):

(define (sgn-d x)

(if (< 0 x)

(>>> -1 31) ; 1

(>> x 31)))

The sgn-d function has cost 11 under the static cost function κs,
and so is not an optimal solution to the static metasketch. SYNAPSE

finds each solution in a few seconds.

Neural Networks. We developed a simple metasketch to train
a feed-forward neural network classifier from a training set. The
neural network metasketch 〈S, κ, g〉 contains a sketch St in S
for each of a (finite) set of neural network topologies t. A sketch
St is an implementation of a feed-forward neural network in the
SSA language of Figure 2 using fixed-point arithmetic and rectifier
activation functions [26]. Each weight in the neural network is
a hole in the sketch, as shown in Figure 10. The cost function
κ simply counts the number of misclassified examples. Notably,
we did not have to explicitly encode a training algorithm such as
backpropagation.

We used this metasketch to train a simple image classifier to
distinguish between cats and other images. We used 40 training
examples (20 cats, 20 not-cats) from the CIFAR-10 dataset [18],
resized to 8×8 pixels and converted to grayscale. SYNAPSE synthe-
sized a neural network in 35 mins that achieved 95% recognition
accuracy on the 40 examples. The synthesized network has 64 input
nodes (one per pixel in the input image), a hidden layer of one node,

a second hidden layer of three nodes, and a single output node. In
training this network, SYNAPSE also explored the rest of the metas-
ketch, consisting of all topologies with at most 2 layers and 4 nodes
per layer (a total of 20 topologies).

Of course, this example is no advance in machine learning: we do
not have anywhere near enough training examples, the recognition
accuracy is measured on the training set, and the training time is
many orders of magnitude slower than backpropagation. Rather,
this example demonstrates that the underlying synthesizer can
discover a training strategy given only an implementation of forward
evaluation and the error function to minimize. It also demonstrates
that SYNAPSE can handle large, under-constrained programs: the
SSA-form program for the synthesized neural network contains 284
instructions, and some other topologies in the metasketch consist of
over 1500 instructions.

6. Related Work

Program synthesis is well studied in the literature. Some program
synthesizers, and some applications of synthesis, implicitly or
explicitly optimize an objective function. This section reviews
related work on program synthesis, domain-specific synthesizers,
and on optimal or quantitative synthesis.

Program Synthesis. Synthesis techniques have been successfully
applied to a wide variety of problems, including compilation for ultra
low power spatial architectures [27]; generation of high-performance
data-parallel code [36, 39]; generation of efficient web layout
engines [24]; education [1]; and end-user programming [11].

Our work builds on recent advances in syntax-guided synthesis
(e.g., [2, 12, 15, 31, 39, 42]), which are based on counterexample-
guided search [35]. In addition to a correctness specification, a
syntax-guided synthesizer takes as input a space of candidate pro-
grams, defined by a syntactic template, and searches it for a program
(if any) that satisfies the specification. Existing approaches employ a
variety of search procedures, including bottom-up enumeration [42],
symbolic solving [12, 15, 35, 39], and stochastic search [31]. The
recently developed syntax-guided synthesis (SyGuS) framework [2]
unifies these approaches, providing a common language for express-
ing synthesis problems, a suite of standard benchmarks, and a set of
search procedures for solving SyGuS problems. We drew several of
our benchmarks from the SyGuS framework.

A number of SyGuS solvers implicitly minimize (or nearly
minimize) a fixed objective function. A bottom-up enumerative
solver [42] implicitly minimizes program length: shorter solutions
will be discovered before longer ones. Some symbolic synthesis
algorithms [12] use a fixed library of components, which is ex-
panded only when the problem is unsatisfiable, implicitly directing
the search toward simpler programs. In both cases, however, the
optimization is implicit, and not easily extended to different cost
functions. The winner of the 2015 SyGuS competition builds sup-
port for refutation-based synthesis into the CVC4 SMT solver [30].
While the refutation approach quickly produces correct solutions,
those solutions are often extremely long. Extending the refutation
approach with support for optimization would be non trivial.

Domain-Specific Synthesizers. Optimality is desirable in a num-
ber of synthesis applications, and so domain-specific synthesiz-
ers often implement an optimization strategy. Chlorophyll [27]
is a synthesis-aided compiler for a low-power spatial architecture
that performs modular superoptimization. The superoptimizer ex-
ecutes a binary search over programs given a cost model: it uses
counterexample-guided inductive synthesis (CEGIS) to synthesize a
program of cost k, and if one exists, to synthesize a program of cost
k/2, and so on. To make the superoptimization scale to real-world
programs, the process uses “sliding windows” to break a program
into smaller pieces. Metasketches also give structure to the search,



but our synthesis approach can provide whole-program optimal-
ity guarantees that the sliding windows technique cannot, and can
reason about more general cost functions.

Feser et al. [10] present a synthesis algorithm for producing
data structure transformations from input-output examples. The
algorithm guarantees optimality of the generated transformation
with respect to an additive cost function over program syntax, which
is defined similarly to the cost function in Example 3 of Section 2. In
contrast, our approach is generic: it is applicable to a broad range of
synthesis problems, and it can optimize a variety of cost functions,
as long as their semantics is expressible in a decidable theory.

McSynth [37] is a synthesizer that generates machine code
instructions from semantic specifications of their behavior. While
McSynth alone does not consider optimality, the authors note
that it could be extended to generate optimal solutions with a
naive algorithm that generates every solution to the synthesis
problem and returns the one among them with minimum cost.
Metasketches provide considerably more structure to the optimal
synthesis process, and can accommodate an unbounded space of
sketches (and therefore solutions).

Optimal Synthesis. Recent work has considered optimality in
synthesis, with various forms of ranking and weighting formula-
tions [13, 22, 28], and in SMT problems in general. Chaudhuri et al.
[6], for example, propose a smoothed proof search technique for
synthesizing parameter holes in a program while optimizing a quan-
titative objective. Smoothed proof search reduces optimal synthesis
to a sequence of optimization problems that can be solved numeri-
cally to satisfy the specification in the limit. The use of numerical
optimization allows this technique to perform probabilistic reason-
ing, which SYNAPSE does not support. However, the technique’s
sketching language is less expressive than a metasketch, allowing
only linear operations on holes. The optimality guarantee also holds
only over a single monolithic sketch, which restricts synthesis to
a finite set of candidate programs; in contrast, a metasketch can
represent an unbounded set of candidate programs.

Symba [20] is an SMT-based optimization algorithm for ob-
jective functions in the theory of linear real arithmetic (LRA).
Symba optimizes the objective function by maintaining an under-
approximation of the maximal cost, and using the SMT solver to
generate new models for the specification that violate that under-
approximation (i.e., are more optimal). This approach builds on
a line of work on optimization for SMT problems [7, 32]. Unlike
Symba, our approach supports non-linear cost functions (in, for
example, the theory of bitvectors) and can optimize over an un-
bounded space of candidate programs. However, Symba is able to
detect when the cost function it is maximizing has no upper bound,
whereas a (compact) metasketch must explicitly rule out this possi-
bility. Integrating Symba with our approach is a promising direction
for future work.

7. Conclusion

We presented metasketches, a general framework for specifying and
solving optimal synthesis problems. A metasketch fragments the
search space of a synthesis problem into an ordered set of sketches,
provides a cost function to optimize, and specifies a gradient func-
tion to direct the search toward cheaper regions of the space. This
three-part abstraction enables the programmer to succinctly express
both the desired (optimal) synthesis problem and a high-level strat-
egy for solving it. By making the search strategy programmable,
metasketches enable rapid creation of competitive (optimal) syn-
thesis tools, ranging from superoptimization to approximation of
computational kernels. Moreover, metasketches bring new expres-
sive power to syntax-guided synthesis, including sketching of un-
bounded search spaces and use of dynamic cost functions that reason

about program semantics. Our synthesis approach, implemented in
SYNAPSE, exploits the structure of metasketches to search for solu-
tions in parallel, employing effective generic and problem-specific
optimizations. Our results demonstrate that custom search strategies
expressed via metasketches make it possible for SYNAPSE to solve
hard synthesis problems, both optimal and classic, which cannot be
solved with general state-of-the-art synthesis algorithms.
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