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Abstract
Concurrency errors in multithreaded programs are difficult to
find and fix. We propose Aviso, a system for avoiding schedule-
dependent failures. Aviso monitors events during a program’s exe-
cution and, when a failure occurs, records a history of events from
the failing execution. It uses this history to generate schedule con-
straints that perturb the order of events in the execution and thereby
avoids schedules that lead to failures in future program executions.
Aviso leverages scenarios where many instances of the same soft-
ware run, using a statistical model of program behavior and exper-
imentation to determine which constraints most effectively avoid
failures. After implementing Aviso, we showed that it decreased
failure rates for a variety of important desktop, server, and cloud
applications by orders of magnitude, with an average overhead of
less than 20% and, in some cases, as low as 5%.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming; D.2.5 [Testing and Debug-
ging]: Error handling and recovery

General Terms Algorithms, Reliability

Keywords concurrency, cooperative failure avoidance

1. Introduction
Concurrency errors in multithreaded programs can lead to non-
deterministic schedule-dependent failures, which are failures that
arise from interactions between threads that are unforeseen by pro-
grammers during development. Such interactions can be character-
ized by sequences of synchronization operations and accesses to
data that the threads share. Atomicity violations, a common type
of schedule-dependent failure, occur when one thread’s access to
shared state is incorrectly permitted to interleave between a pair
of accesses in another thread. Ordering violations, another type of
schedule-dependent failure, take place when operations in different
threads occur in an order that leads to a failure.

Most prior work dealing with concurrency errors has focused
on their detection, which typically involves identifying patterns of
memory accesses specific to certain bug types. Unfortunately, even
with state-of-the-art tools, concurrency bugs remain in deployed
code and cause costly, schedule-dependent failures.

Recent research is exploring the avoidance of schedule-dependent
failures. Avoidance work seeks to determine the sequences of op-
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erations most likely to lead to buggy behavior and to prevent those
sequences from executing. This general idea has had several incar-
nations. For example, prior work proposed the use of hardware to
prevent atomicity violations [12, 13] and to bias execution towards
tested behavior [27, 28]. Other avoidance work used memory-
protection-based techniques [21, 22] and relied on programmer
annotations to modify strategic points in a program [26].

These recent efforts have made progress toward more reliable
concurrent systems, but they fall short in several ways. Some re-
quire significant programmer effort, which may be better spent
patching the faulty program. Many cater only to certain types of
bugs, and several require complex, expensive changes to hardware.

Failure avoidance systems face many complex challenges. Sys-
tems must monitor program execution to collect the information
needed to identify likely failures. This monitoring must be effi-
cient because failure avoidance is most useful in deployed sys-
tems, where performance is paramount. Systems also require pre-
cise techniques to identify failures using the collected data and
mechanisms to influence the program’s execution to avoid failures;
as with monitoring, such mechanisms must be efficient. Further-
more, systems should avoid failures without requiring modifica-
tions to hardware or changes to the way programmers write their
programs.

We overcome these challenges in this work. Our main con-
tribution is a novel, automated technique for avoiding schedule-
dependent failures. We develop an efficient system for collecting
relevant program events at run-time in deployed software. When
a program instance fails, we use the information collected by our
system to generate hypotheses about what caused the failure. Then,
leveraging the fact that we often have a number of deployed in-
stances of the same software, we develop a predictive statistical
model and an empirical framework to identify which hypothesis is
most likely to be correct. Based on that hypothesis, we influence fu-
ture program executions by perturbing the thread schedule to avoid
subsequent failures.

We implement these ideas in Aviso, a distributed framework that
coordinates many deployed instances of a program to cooperatively
learn how to prevent failures. Our system works on commodity
hardware with minimal impact on software and the development
process. Our evaluation on several real-world desktop, server, and
cloud applications shows that Aviso effectively and efficiently im-
proves software reliability. In one test, Aviso reduced the failure
rate of a buggy version of Memcached, a popular key-value store,
by two orders of magnitude. Fixing the bug took developers about
a year and their fix imposed about 7% performance overhead [1].
Aviso worked without developer intervention and in minutes found
an effective constraint that imposed only a marginally higher over-
head of about 15%.

The remainder of this paper describes Aviso in greater detail.
Section 2 provides background that explains how Aviso avoids
schedule-dependent failures. Section 3 reviews Aviso’s design



goals and architecture, while Section 4 relates how Aviso decides
which events to monitor during an execution and how events and
failures are to be monitored. We describe how Aviso generates can-
didate constraints after a failure in Section 5 and how it determines
which candidate constraint effectively prevents failures as well as
inter-system constraint sharing in Section 6. Section 7 provides
implementation details. Sections 8–10 evaluate and characterize
Aviso, contrast it with prior work, and summarize our findings.

2. Schedule-Dependent Failures
A program’s execution experiences a schedule-dependent failure
when threads execute a particular sequence of events that leads
to a crash, contract violation (e.g., assertion), or state corruption.
Schedule-dependent failures are the result of programming errors,
such as absent or incorrectly used synchronization.

Figure 1(a) illustrates how a programming error leads to a fail-
ure using an example from AGet-0.4, a multithreaded download
accelerator. Figure 1(a) shows a snippet of a failing multithreaded
execution. The failure is an atomicity violation: Thread 1 writes
bytes to a file (pwrite(...) on line 116) and then adds the num-
ber of bytes written to the file to a shared counter (incrementing
bwritten on line 121). The failure occurs when Thread 2 asyn-
chronously reads the value of bwritten on line 41, between the
call to pwrite() and the increment that follows. The programmer
has omitted synchronization operations in Thread 2, permitting that
thread to read an intermediate value. Note that if Thread 2’s read
was delayed, and Thread 1’s update was allowed to proceed, the
failure could have been avoided.

116:dw = 
     pwrite(...);

41: h.bwritten = 
      bwritten;

Thread 2

Resume.cDownload.c

Thread 1

BUG:Stale value of bwritten read by Thread 2

121:bwritten +=
     dw;

(a) A failing execution. The failure
occurs when Thread 2 reads a stale
value of bwritten.

41: h.bwritten = 
      bwritten;

After Download.c:116, 
Delay Resume.c:41)

Constraint116:dw = 
     pwrite(...);

Thread 2Thread 1

121:bwritten +=
     dw;

The delayed read gets the correct value

Constraint Activated

Delayed

(b) Avoiding the failure. The con-
straint delays Thread 2, reordering
operations to avoid the failure.

Figure 1. A schedule-dependent failure in AGet-0.4.

2.1 Bug Depth
Recent concurrency testing work [3] formally characterized con-
currency errors using the notion of bug depth. A bug’s depth is the
minimum number of pairs of program events that must occur in a
particular order for that bug to manifest a failure [3]. Note that a
single bug can lead to different failures under different execution
schedules. A different set of event pair orderings is necessary to
manifest each different failure and a failure occurs only if all its
necessary orderings are satisfied. Typically, most schedules do not
satisfy all orderings required to cause any particular failure, so ex-
ecutions usually do not fail.

This fact poses a key challenge to multithreaded testing. To
expose a bug during testing by causing a failure, systems must
enforce a number of orderings on the execution schedule that is
greater than or equal to the bug’s depth. The larger the bug’s depth,
the more work is needed to ensure that a failure occurs [3]. The bug
in Figure 1(a) has depth 2 because two pairs of events must execute
in a particular order for the failure to manifest: Thread 2’s read
must follow Thread 1’s pwrite call and must precede Thread 1’s
bwritten update. If the first ordering were not upheld, Thread 2
would correctly see the value of bwritten before any of Thread
1’s operations. If the second ordering were not upheld, Thread 2
would correctly see the result of Thread 1’s operations.

2.2 The Avoidance-Testing Duality
In this work, we make the observation that a failure caused by a bug
of any depth can be avoided by perturbing just one pair of events
in the sequence that leads to the failure. Given a chain of pairs of
events that must be ordered to manifest a failure in testing, per-
turbing the schedule to reorder any of the pairs “breaks the chain”,
preventing that failing schedule from occurring. This observation
suggests a duality between testing for schedule-dependent failures
and avoiding them: testing requires enforcing all of a conjunction
of pair orderings to exercise a failing schedule; avoidance requires
reordering events in any of those pair orderings to avoid a failing
schedule. Avoiding a particular failing schedule leads the execution
to a new schedule. Avoidance is successful if the new schedule does
not lead to a failure, which is likely the case since there are typi-
cally significantly more failure-free schedules than schedules with
failures.

Figure 2(a) illustrates bug depth. The circles are program events
and the arrows represent pair orderings necessary to lead to a
failure. There are d orderings, so assuming the figure shows the
fewest possible orderings for the bug to cause a failure, the bug
has depth d. Figure 2(b) contrasts testing and failure avoidance.
Exposing a bug during testing requires satisfying a conjunction of
d pair orderings, whereas the failure is avoided if a single pair of
events is reordered.

Failing
Event

Sequence

Necessary
Event

Ordering

P1
P2

Pd

Bug Depth = d

(a) Pair orderings necessary for
the failure to occur. There are d
orderings, so the bug responsible
for the failure has depth d (assum-
ing the figure shows the fewest or-
derings for the bug to cause a fail-
ure).

Testing

Avoidance

P1 /\ P2 /\ ... /\ Pd
¬ P1 \/ ¬ P2 \/ ... \/ ¬ Pd

Testing must enforce all necessary orderings.
Avoidance must reorder at least one.

(b) Contrasting testing with failure
avoidance. Testing aims to expose bugs,
so all orderings must be satisfied. Avoid-
ance aims to prevent failures by reorder-
ings the events in any ordering.

Figure 2. The Avoidance-Testing Duality.

3. System Overview
This section provides an overview of Aviso’s system architecture
and design constraints. We then walk through Aviso’s failure avoid-
ance mechanism with an example, and explain how Aviso facili-
tates cooperative, empirical failure avoidance in a community of
software instances.

3.1 System Architecture
Figure 3 presents Aviso’s four components: (1) the profiler, (2) the
compiler, (3) the runtime system, and (4) the framework.
Profiler and Compiler. After development, the programmer runs
Aviso’s profiler, which determines what program operations to
monitor. The profiler sends an event profile to Aviso’s compiler.
The compiler uses the event profile to add event-handling runtime
calls to the binary and links the binary to the Aviso runtime to
produce and Aviso-enabled executable.
Runtime. The Aviso runtime system monitors and keeps a short
history of events during program execution. The runtime also
watches for failures and alerts the framework when they occur.
Periodically during execution and when execution fails, the run-
time sends its event history to the framework. The runtime can
also perturb the execution schedule using schedule constraints (see
below) that it receives from the framework.



Framework. Aviso-enabled executables run in the Aviso frame-
work and the two communicate via a simple messaging API. The
framework collects event histories and failure information sent by
the runtime. It generates schedule constraints from this informa-
tion and sends them to the runtime when Aviso-enabled executa-
bles start running. The framework selects constraints to send us-
ing a statistical model that predicts which constraint is most likely
to avoid failures; it builds the model using aggregated history and
failure information. By aggregating information from and sending
constraints to many program instances, the framework enables pro-
gram instances to cooperatively avoid failures.

Profiler

Runtime System
Sends event 

histories & failures

Compiler

Identifies
Events

Add Events 
to ProgramSends event profile

Produces Aviso-Enabled
Executable

Sends constraints

Framework

Generate Constraints 
from Event Histories

Select Constraints w/ 
Statistical Model

Build Statistical Model 
From Histories & Failures

Distribute Constraints

Original
Program

Deployment

Collect Event Histories
Monitor Failures

Aviso-Enabled Executable

Avoid Failures with Constraints
Community of program instances

API over
HTTP

Figure 3. Aviso’s components. The compiler and profiler find and
instrument events. The runtime system monitors events and failures
and avoids events. The framework generates constraints, selects
likely effective constraints using a statistical model and shares
effective constraints in a community of software instances.

3.1.1 Design Requirements
Our goal is to build a system that is general enough to avoid fail-
ures due to a broad class of concurrency errors in a deployment set-
ting. This goal presents us with conflicting design constraints: For
the sake of generality, the runtime should monitor as many pro-
gram operations as possible, to capture a large variety of failure
behaviors. However, monitoring imposes a time and space over-
head, and building a system intended for use in deployment neces-
sitates high performance. Aviso should find effective constraints
quickly and permit as few failures as possible. To do so Aviso must
leverage prediction to identify effective constraints without having
to directly observe their impact on the program’s behavior. Aviso
is additionally constrained because programmer time is valuable
and understanding and fixing concurrency errors is difficult, error-
prone, and time consuming. Our system should require as little as
possible from the programmer.

3.2 Avoiding Failures with Schedule Constraints
Aviso leverages the avoidance-testing duality introduced in Sec-
tion 2.2 to avoid failures. Aviso uses schedule constraints to perturb
an execution’s thread schedule with the goal of reordering events in
the execution whose original order leads to a failure.

A constraint is based on a pair of events observed by Aviso in
a failing program execution. It is “activated” when the first event
in its pair executes. When a constraint is active and a thread tries
to execute the second event in the constraint’s pair, Aviso delays
the thread, reordering some events in the execution. If the original
order of the reordered events was necessary for a failure to occur,
reordering the events will avoid the failure. Such reorderings are

the key to Aviso’s failure avoidance mechanism. We provide more
details on avoidance in Section 5.2.

Figure 1(b) shows how Aviso uses a constraint to avoid a failure.
The constraint is made from a pair of events: the first event is
Thread 1’s pwrite call at Download.c, line 116, and the second
event is Thread 2’s read of bwritten at Resume.c, line 41. When
the first event is executed, the constraint is activated. While the
constraint is active, Thread 2 attempts to execute the second event,
and it is delayed. During this delay, Thread 1’s bwritten update
executes atomically with its pwrite call, preventing the failure.
Later, when Thread 2 resumes execution, it reads the correct value
of bwritten.

3.3 Cooperative Empirical Failure Avoidance
Aviso is an empirical failure avoidance system. When a failure oc-
curs, it generates a set of constraints from its event history (see
Section 5). Each constraint is a hypothesis about how to prevent the
failure. Aviso decides which constraints are most likely to avoid
failures and instructs program instances to use those constraints. It
is an empirical system because it uses a combination of predictive
statistical modeling and experimentation to select effective con-
straints. As Aviso observes more execution behavior, it refines its
model, improving its selections. The details of constraint selection
are described in Section 6.

Aviso is also a cooperative failure avoidance system. It lever-
ages communities of computers running the same program to select
effective constraints in two ways. First, Aviso’s statistical model is
built using information drawn from a community of program in-
stances. Second, Aviso distributes constraints to all members of a
community. A constraint that consistently avoids failures for some
members can be distributed to other members, sharing its benefit.

4. Monitoring Events and Failures
Aviso’s profiler identifies program operations relevant to concur-
rent program behavior. The compiler inserts event-handling run-
time calls into Aviso-enabled executables before each operation.
Aviso works on deployed programs, so determining which opera-
tions should be treated as events determines the overhead of event
handling. Aviso uses static and dynamic analyses to prune the de-
tected set of events. Aviso’s runtime traces events during execution
and monitors for failures.

4.1 Identifying Relevant Program Events
Aviso focuses on concurrency errors, so we restrict our attention
to events related to concurrency. There are three types of events
that Aviso monitors: (1) synchronization events, (2) signal events,
and (3) sharing events. Synchronization events are lock and unlock
operations, thread spawn, and join operations that can be identified
by matching synchronization library (e.g., pthread) calls. Aviso
can handle other types of synchronization, as well (e.g., CAS) if the
programmer identifies them as sychronization.

Signal events are functions that handle signals. They are of inter-
est because signals may be delivered and handled asynchronously.
Signal events are identified by instrumenting signal handler reg-
istration functions (e.g., signal()) and functions that explicitly
wait for signal delivery (e.g., sigwait()).

Sharing events are more difficult to identify because they cannot
be identified by looking only at syntactic properties of a program.
Instead, Aviso identifies sharing events using a sharing profiler
before application deployment, i.e., during testing. The sharing
profiler monitors threads’ accesses to shared data. When a thread
accesses data that has been accessed by another thread during the
execution, the operation the thread is executing is considered to
be a sharing event. Sharing events are reported by the profiler



and inserted into the deployment binary by Aviso’s instrumenting
compiler. Aviso identifies events by their instruction address and
the call stack when the event occurs.

4.2 Pruning and Instrumenting Events
Handling events too frequently leads to high performance over-
heads. To mitigate that issue, we use two techniques to reduce the
number of handled events. First, our instrumenting compiler uses
dominance pruning to eliminate instrumentation of some events.
Second, our runtime system uses online pruning to limit the num-
ber of events that are handled.

Dominance Pruning (Static) Analysis. When compiling a func-
tion and before optimization, Aviso’s compiler computes the set of
dominators for each instruction. We use the computed dominance
relationships to prune the set of candidate events. Given a pair of
events (p, q), if p dominates q, then for every execution of q, there
was a prior execution of p. Hence, tracking only p captures nearly
as much information as tracking both p and q. In this situation, we
remove q from the set of candidate events. If p and q are far apart in
the code, dominance pruning might discard useful events. However,
our analysis did not pose problems in our experiments for several
reasons. First, dominance pruning does not apply to synchroniza-
tion events, and synchronization events often occur near sharing
events. Second, we identify sharing events using profiling, which
is approximate; dominance pruning makes the approximation only
slightly less precise. Third, dominance pruning operates at function
granularity, limiting the distance between p and q to the length of a
function at most. Fourth, if events are far apart, the dominance rela-
tion still conveys information about the interleaving of events along
certain control flow paths. This information is less precise but still
useful to prevent failures.

Online Pruning. To further reduce overheads, Aviso uses online
pruning to adaptively reduce the number of events handled. During
execution, Aviso tracks the interval between consecutive events.
If two events occur within 1µs of one another, they likely encode
redundant information, and Aviso discards the second of the two.
Discarding events is, in effect, dynamically coalescing a sequence
of events that occur within 1µs of one another into a single event,
represented by the first in the sequence.

4.3 Tracing Important Program Events
When generating schedule constraints, Aviso focuses on pairs of
events that occurred in a single failing program execution. When
an execution fails due to a concurrency bug, the event sequence
that caused the failure must have occurred during that execution.
Aviso focuses on program events that occurred just before the
failure. These events are likely to be related to the failure because
some code point must have trigger the failure (e.g., caused a crash,
emitted buggy output, violated a contract, etc.); these events must
have occurred occurs shortly before the symptom of the failure was
manifested. This observation suggests that a backward scan over a
trace of events from the point of failure is likely to encounter the
events involved in the failure.

We therefore designed the Aviso runtime to maintain a totally
ordered history of events recently executed by any thread, called
the Recent Past Buffer, or RPB, for the execution. The RPB is a
fixed-size queue; the size could vary across implementations, but it
should be on the order of hundreds of events. We used an RPB that
holds at most 1000 events from each thread. Across most of our
experiments, we saw an average event frequency of around 500µs,
so each thread’s RPB covers about the last 0.5s of its execution.
Half a second is likely to be long enough to capture events related
to a failure, as prior work suggests that such events often occur
over short windows of execution [10, 11, 13]. When an event is

executed, the oldest event in the RPB is dequeued and discarded,
and the newest event is enqueued. When a failure occurs, the RPB
contains a history of the execution’s final moments and is likely to
include the events that led to the failure.

4.4 Monitoring Program Failures
For crashes and assertion failures, the runtime preserves the RPB
before the program terminates. For other failures, Aviso monitors
for ad hoc failure conditions and preserves the contents of the RPB
when failure conditions are met.

The best way to detect non-crash failures depends on the fail-
ure’s symptom. Identifying arbitrary failures automatically is a dif-
ficult problem, and doing so comprehensively is outside the scope
of this work. However, simple solutions often work well; e.g., val-
idating output is often adequate. In our tests with Memcached, we
added an assertion that encodes a simple data structure invariant,
preventing the use of deallocated storage. Section 8.1 describes our
experience adding failure monitors to programs for the subset of
our tests that required it.

In general, given an error report that describes a failure’s symp-
tom, an ad hoc failure monitor can be added to the Aviso framework
to handle any failure diagnosis criteria. Using failure monitors is
not always necessary – Aviso deals with fail-stop errors by default.
When necessary, adding failure monitors is less risky and onerous
than patching code or writing a workaround [26].

5. Generating Constraints and Avoiding Failures
After a failure, the framework examines the RPB and enumerates
event pairs that could potentially have led to the failure. For each
pair, it generates a candidate constraint that perturbs the thread
schedule around the events in the pair. A candidate is effective if
its perturbation avoids a failure. The framework selects candidate
constraints to make available to future program executions that can
use them to avoid failure. In Section 6 we discuss how Aviso selects
effective candidates.

5.1 Generating Candidate Constraints
We take a straightforward approach to selecting event pairs to
generate constraints. The framework considers pairs of events in
execution order in the RPB, (B,A), that were executed by different
threads. It selects these pairs under the constraint that between B
and A no event was executed by the thread that executed B. Note
that between events in a pair, other uninvolved threads may execute
other unrelated events.

Figure 4 illustrates the process of enumerating event pairs. No-
tice that Thread 1’s first execution ofE is not part of a pair because
it is immediately followed by B in the same thread. Also notice
that Thread 2’s F and Thread 3’s X form a pair in spite of their
separation by Thread 1’s executions of E.

Thread 1 E B

Thread 2 A

C E E E E

F

Time

Event PairR
ec

en
t P

as
t

Bu
ffe

r

XThread 3 Event

Figure 4. Enumerating pairs from a failing execution’s RPB.
There are three threads, and time proceeds left to right. Circles are
events, and arcs between events are event pairs. Arcs for duplicate
pairs are omitted. The figure shows a single 10-event window of
events, but selection occurs for all 10-event windows.

To limit the number of constraints generated, we rely on the
assumption that events that comprise effective constraints occur



within a short window; we consider only event pairs separated by
fewer than 10 events in the RPB. This assumption is reasonable
for several reasons. First, prior work on finding and avoiding con-
currency bugs [8, 12, 13, 18, 24, 25] suggests that the events in-
volved in schedule-dependent failures often occur within a short
window of the program’s execution (i.e., hundreds or thousand of
instructions). Second, each event in the RPB represents a span of
the program’s execution, not a single instruction. Due to our online
pruning approach (Section 4.2), two consecutive events in the same
thread are at least 1µs apart, meaning that each event can represent
thousands of instructions. Hence, a 10-event window covers a part
of the execution large enough to contain useful event pairs.

5.2 Avoiding Failures
Each event pair corresponds to a schedule constraint. The first event
in the pair is the constraint’s “activation event”, and the second
event is the “delay event”.

When a program instance starts, the framework makes a set
of constraints available to the program instance. Every constraint
starts as inactive. Inactive constraints have no effect on the pro-
gram’s execution. When a constraint’s activation event is executed,
the constraint is instantiated, and added to a set of active con-
straints. The runtime system records the ID of the thread that ex-
ecuted the activation event as the “activator” in the constraint in-
stance. A thread may have at most one instance of a constraint ac-
tive, but if several different threads execute a constraint’s activation
event, each thread will instantiate its own instance of the constraint.
Figure 5 illustrates the constraint activation process.

Available
Constraints

Active
Constraints

Thread 1
executes B

Instantiate
             with

Activator = Thread 1

X E
Activation Event Delay Event

X E
Activator:
 Thread 3

B A
Activator:
 Thread 1

X E
Activator:
 Thread 3

B A X EB A

B A

Figure 5. Constraint Activation. Available constraints are those
that Aviso has made available to the execution. Active constraints
are constraint instances that have been instantiated and can trigger
delays. The large, central arrow signifies Thread 1 executing event
B. To the left of the arrow there are no instances of the constraint
(B,A); event B is its activation event, so when B is executed
an instance of the constraint is added to the Active Constraints
set (shaded cloud). Aviso records that Thread 1 is the instance’s
activator in the instance.

When a thread executes the constraint’s delay event, Aviso
decides whether to perturb the execution. To do so, it compares
the executing thread to the activator of each constraint instance. If
the thread executing the delay event is the same as the activator of
a constraint instance, Aviso does nothing and execution continues.
If it is different, Aviso delays that thread’s execution. The delay
perturbs the execution schedule by permitting threads other than the
delayed one to continue their execution ahead of the delayed event.
The reordering of these other threads’ events with the delayed
event is Aviso’s strategy for preventing failures, as we described
in Section 3.

5.2.1 Practical Issues with Constraints
There are several practical issues related to pair-based constraints.

Delay Length. Events delayed by constraints cannot be delayed
indefinitely without impeding forward progress. Delays must be
long enough to reorder events that would lead to failures, but short
enough that their impact on performance is tolerable. We empir-
ically determined that 1ms achieved this balance well across our
benchmarks: any shorter and Aviso was unable to prevent failures

in some cases; any longer and performance degraded without im-
provement in failure avoidance. We show data in Section 8 that
further support our choice of delay length.

Composing Constraints. It is important that Aviso not be lim-
ited to preventing only one failure due to one bug at a time. Most
programs have more than one bug. Each bug may lead to a differ-
ent failure. To deal with this problem, Aviso can make a collection
of constraints available to threads, each with different activation
and delay events. When any constraint’s activation event is encoun-
tered, the executing thread instantiates that constraint. Threads can
instantiate multiple different constraints simultaneously to avoid
multiple different classes of failures. Section 6 describes how Aviso
decides when multiple constraints should be available to be instan-
tiated.

5.2.2 Why Do Event Pairs Make Effective Constraints?
Section 2 discussed the relationship between schedule-dependent
failures and bug depth: if we invert one of the d event pair orderings
necessary for a bug of depth d to cause a failure, we prevent the
failure. In general, Aviso is effective if it generates constraints that
reorder such events, like the one in the center part of Figure 6. We
now describe how Aviso can use the constraint in Figure 6 to avoid
two concrete classes of failures – atomicity violations and ordering
violations.

Atomicity Violation
Failure occurs when A interleaves 
B and C, which, the constraint 
prevents.

"After B, Delay A"

Constraint
B,A

Thread 1
B

C

A

Thread 2
Constraint Activated

A is Delayed...
A

Ordering Violation
Failure occurs when A precedes 
C.  B precedes C in Thread 1. 
The constraint reorders A after 
C, preventing the failure.

Delay

Figure 6. How a constraint avoids a failure. The constraint is
shown in the cloud and is made from events B and A; when a
thread executes B, the constraint is instantiated. When another
thread executes A, it is delayed. The left side shows an execution
snippet that can be viewed as both an atomicity violation and an
ordering violation.

Avoiding Atomicity Violations. Figure 6 shows how constraints
avoid atomicity violations. It depicts two threads with Thread 1
executing events B and C, which should not be interleaved by
other events. Thread 2 is executing eventA. The atomicity violation
occurs if A happens between B and C. Note that there are two
points in the execution where the failure can occur – just after
A executes or just after C executes. In either case, the constraint
prevents the failure. When Thread 1 executes B, it instantiates
the constraint. When Thread 2 tries to execute A, it is delayed.
During the delay, Thread 1 safely executes C. The delay prevents
the failure by reordering A after C, rather than between B and C.
Avoiding Ordering Violations. Figure 6 also shows how constraints
avoid ordering violations. To view the figure as an ordering vio-
lation, assume a failure occurs when Thread 2 executes A before
event C.

Avoiding ordering failures is challenging because when the
failure manifests, execution may fail just after C or just after A.
If the program fails just after A, C will never execute and will
therefore not appear in the RPB after the failure, so the Aviso
framework will be unable to use it to form a constraint. To handle
these failures, Aviso relies on the presence of a third event, B,
executed by the same thread as C (Thread 1). In failing runs, B
executes just before C would have and is added to the RPB. When
A executes and the failure occurs,B is in the RPB followed byC. If



session.cpp:278 h->shared = 
                tr_sharedInit(); 

session.cpp:282 h->bandwidth = 
                tr_bandwidthNew(); 

platform.c:222  lock(h->lock);

bandwidth.c:251 assert(h->bandwidth); 

event.c:388     event_callback(...);

B

A
C

D

Never executes Assertion Failure!

Thread 1 Thread 2

(a) A failing execution. Events are identified by the labeled circles.

Time

Effective ConstraintBThread 1

Thread 2 D A
Assertion FailureRecent Past

Buffer assert(h->bandwidth); 

(b) The RPB just after the failure. Arcs indicate the event pairs Aviso
enumerates and uses to generate constraints. The dashed arrow indi-
cates that the pair (B,A) corresponds to a constraint that effectively
avoids the failure by delaying Thread 2’s execution of A until after
Thread 1 executes B.

Figure 7. A use-before-initialization failure from Transmission
and the constraint that avoids it.

C had executed, it would have immediately followed A. Hence, A
following B in the RPB of a failing run indicates that the incorrect
ordering of A and C is likely to have occurred.

The constraint in the figure is formed from B and A. When
Thread 1 executesB, it activates the constraint. Later, when Thread
2 tries to execute A, it is delayed by the constraint. The delay gives
C a chance to execute, preceding A. When the delay expires, A
executes after C, avoiding the failure.

5.3 Constraint Generation Example: Transmission
Figure 7 illustrates a failure that can occur when Transmission-
1.42 is starting up. Figure 7(a) shows an execution of the events
that lead to a failure. The execution fails when Thread 2 reaches
assert(h->bandwidth) at bandwidth.c:251 before Thread
1 assigns h->bandwidth at session.cpp:282. In this situ-
ation, h->bandwidth is uninitialized, so the assertion fails.

Figure 7(b) shows an RPB snippet immediately after the execu-
tion fails. The way the constraint avoids the failure corresponds di-
rectly to the ordering violation situation in Figure 6. The constraint
delaysA (Thread 2’s lock acquire at platform.c:222), making
it execute afterC (Thread 1’s assignment at session.cpp:282).
This reordering prevents a failure because h->bandwidth is ini-
tialized by Thread 1 before the assertion executes.

6. Selecting and Distributing Constraints
After an execution fails, the Aviso framework generates a large
set of candidate constraints to assess which can prevent failures. It
selects the constraints most likely to avoid failures and distributes
them to new program instances when they start up.

6.1 Selecting Constraints
Aviso selects constraints using a two-part statistical model. The first
part of the model is the event pair model that represents properties
of event pairs, as they occur in correct and failing executions. The
second part, the failure feedback model, empirically determines
which constraints are most effective by tracking each constraint’s
impact on the program’s failure rate. As Aviso progressively ob-
serves more failing and non-failing program runs, its models im-
prove, yielding better selections.

6.1.1 Event Pair Model
The event pair model represents each constraint with a vector of
features. The value of each of these features is different for each

constraint and is derived from execution behavior observed by
Aviso in failing and non-failing executions. The magnitude of a
constraint’s feature vector determines how likely the constraint is
to be effective.

There are two main concerns related to the event pair model:
(1)Collecting the information that goes into building the model; and
(2)Describing and computing the features’ values for each pair.

Collecting Model Information The event pair model synthesizes
information in RPBs from both non-failing and failing program
executions. When Aviso collects an RPB, it updates the event pair
model by recomputing each constraint’s feature values.

The model uses the information in RPBs from failing program
executions. In Section 5 we described how Aviso collects post-
failure RPBs to generate constraints. Aviso uses those RPBs to up-
date its event pair model. Aviso also collects RPBs from non-failing
program executions. To do so, Aviso samples the state of the RPB
very rarely during correct executions. At a uniformly randomized
interval between 0.1s and 20s, Aviso interrupts execution, captures
the state of the RPB, and uses it to update the event pair model.
Note that if Aviso samples an RPB, just before a failure occurs,
the RPB may contain events related to the failure. To keep these
events out of its set of correct RPBs, Aviso waits a fixed period of
5s before incorporating the correct run RPB into its model. If in the
interim the execution fails, the sampled RPB is discarded.

Features Aviso represents each constraint with a vector of three
features: ordering invariance, co-occurrence invariance, and fail-
ure correlation. Feature values are between 0 and 1. We engineered
our feature representation so that larger feature values indicate a
constraint is more likely to prevent a failure.

Ordering Invariance (OI) helps identify constraints whose events
occur in one order in non-failing runs, but the opposite order in
failing runs. Given a constraint built from a pair of events, (B,A),
its OIB,A value is:

OIB,A =

∑
c∈CorrectRuns f

c
A,B∑

c∈CorrectRuns f
c
A,B + fc

B,A

where fc
x,y represents the number of times the pair x, y appears

in the RPB sampled from correct run c. Note that the value of
OI is larger if (A,B) occurs much more often in correct runs
than (B,A). A large OI value suggests (B,A) is anomalous in
correct runs and therefore related to the failure. Hence, perturbing
the execution around (B,A) is more likely to avoid the failure.

Co-Occurrence Invariance (CI) identifies constraints whose pairs
of events tend not to occur together in non-failing runs, but occur
together in failing runs. Given a constraint built from a pair of
events, (B,A), its CIB,A value is:

CIB,A = 1.0−
∑

c∈CorrectRuns f
c
B,A∑

c∈CorrectRuns[
∑

y 6=A f
c
B,y +

∑
x 6=B f

c
x,A]

Note that the fraction part of CI is large if B and A occur together
frequently in non-failing runs, or ifB andA occur with other events
infrequently in non-failing runs. Both of these conditions suggest
the pair (B,A) is not an anomaly in non-failing runs. We invert the
sense of the fractional term subtracting it from 1.0. As a result,
the value of CI is larger if B and A more often occur in non-
failing executions in pairs with different events, rather than with
one another.

Failure Correlation (FC) identifies pairs of events that occur fre-
quently in failing executions. Given a constraint built from a pair
of events, (B,A), its FCB,A value is:



FCB,A =
FB,A

F
where F is the total number of failing executions and FB,A is
the total number of failing executions in which (B,A) occurred
at least once. A large FC value suggests that B and A tend to occur
consistently in failing executions and are therefore related to the
failure; therefore perturbing the execution around (B,A) is likely
to avoid the failure.

FC is unlike CI and OI in two ways. First, CI and OI are com-
puted based on RPBs from non-failing executions; FC is computed
using data from failing executions. Second, unlike CI and OI, FC is
computed using FB,A and F – numbers of executions, rather than
numbers of occurrences of pairs (e.g., fc

B,A). This is because the
frequency of a pair unrelated to a failure in a failing execution may
be different because the execution terminated early due to the fail-
ure. Such differences act as noise in our model. Instead, our method
for computing FC factors out this source of noise.

6.1.2 Failure Feedback Model
The second mechanism Aviso uses to select constraints is the fail-
ure feedback model. This model records the failure rate, FR, ob-
served for each constraint. The model also records the failure rate
with no constraints available. If the program’s failure rate is low
(i.e., many non-failing runs, few failing runs) when a particular con-
straint is active, it is likely that that constraint helps avoid failures
more than others.

Every time the program terminates, the failure feedback model
is updated. If the program exited normally, Aviso increments the
model’s record of the number of non-failing runs for all constraints
available to the program instance during that execution. If the
program fails, Aviso updates the model’s record of the number of
failing runs.

Dealing with Long-Running Programs To keep the failure feed-
back model up to date, programs send Aviso a message indicating
success or failure when they terminate. However, long-running pro-
grams like servers terminate infrequently. If an constraint is effec-
tively preventing failures, the program may run indefinitely. In this
case, Aviso might never update the failure feedback model to reflect
the success of the constraint. To handle long-running programs, we
add a facility to Aviso to record “logical time” ticks. To use logical
time, we rely on the programmer to add markers to the code that
represent progress in the application. Each call sends the frame-
work a message, telling it to increment the non-failing execution
count of each constraint the program is using; hence, a logical time
tick in a long-running program is effectively a “non-failing run”.
We found these calls trivial to insert, even into large and unfamil-
iar programs. For example, in our experiments with Apache and
Memcached, we incremented logical time after 1,000 and 10,000
requests were processed, respectively.

6.1.3 Combined Avoidance Likelihood Model
The framework selects constraints by querying its combined avoid-
ance likelihood model, which incorporates both the failure feed-
back model and the event pair model. The combined avoidance
likelihood model is a probability distribution with an entry for each
constraint. The value of an constraint’s entry is the likelihood that
it is effective as predicted by the event pair model, scaled by an
exponential function of the constraint’s observed failure rate, as
recorded in the failure feedback model. Concretely, the amount of
probability mass contributed by an constraint is:

PB,A = (CIB,A ×OIB,A × FCB,A)︸ ︷︷ ︸
Event Pair Model

× er1×(1.0−FRB,A)−r2 + s︸ ︷︷ ︸
Failure Feedback Model

where r1, r2 are parameters of the exponential function used in the
model and s is a smoothing factor that keeps the model defined and
bounded by 0 and 1. We chose r1 = 8, r2 = 0.7, and s = 0.001.
These choices cause the function to peak whenFR = 0 and bottom
out at 0.001 (s).

The intuition behind the combined model is the following. The
event pair model is predictive – the model’s features encode our
inductive bias, and data (RPBs) refine the model’s predictions. The
failure feedback uses feedback to scale predictions made by the
event pair model. The scaling factor varies exponentially with the
constraint’s failure rate – constraints that fail often are exponen-
tially less likely to be drawn than ones that fail rarely or never. As
failures and non-failing runs occur, Aviso refines its models. Over
time, effective constraints’ probabilities in the combined model
grow and ineffective constraints’ probabilities decrease.

Figure 8 illustrates the combined model. Failure correlation
(FC) is computed based on RPBs from observed failures. Co-
occurrence invariance (CI) and Order invariance (OI) are computed
based on RPBs sampled from correct execution. The failure feed-
back model maintains failure rate values for each constraint, com-
puted by monitoring constraint failures. Aviso uses the combined
model to select constraints according to a probability function com-
posed of the event pair and failure feedback models, as shown.

Event Pair Model
Failure Feedback Model

Combined
Model

 Correct 
RPBs

er1×(1.0−FRB,A)−r2 + s
Failing
RPBs

CIB,A

OIB,A

FCB,A

FCB,A x OIB,A x CIB,A

Constraint Selection

(B,A)

Constraint
Failures

FRB,A

PB,A

Figure 8. Aviso’s statistical model. The event pair model tracks
feature values for each constraint. The failure feedback model
tracks constraints’ failure rates. The combined model is comprised
of the other two, yielding a selection probability for each constraint.

6.2 Distributing Constraints
All constraints start equally likely to be drawn. As program in-
stances run, Aviso samples non-failing RPBs and stores them as the
program runs. When the program fails, the framework generates
constraints. The framework initializes the event pair model using
the stored RPBs and the combined model assigns each constraint
an initial probability based on the event pair model. The failure
feedback model is ignored at this point because before any execu-
tions, all constraints’ failure rates are undefined. Later, when a pro-
gram instance starts, it queries Aviso for constraints. Aviso selects
a constraint and sends it to the instance.

Aviso periodically instructs program instances to run with no
constraints to establish the application’s baseline failure rate. Ini-
tially, Aviso sends no constraint 10% of the time; the rate drops to
1% after seeing enough executions without any constraints to es-
tablish 95% statistical confidence that the observed baseline failure
rate is within 5% of its actual value, assuming a binomial distribu-
tion of failures.

We continuously compute χ2 statistics for each constraint to
determine the significance of the difference of the constraint’s ob-
served failure rate and the baseline failure rate. We use a 2x2 con-
tingency table and consider a difference to be significant if the
χ2 test indicates it to be with at least 95% probability. When a
constraint that significantly decreases the failure rate is identified,
Aviso uses that constraint 75% of the time. However, Aviso con-
tinues to draw constraints from the combined model for two rea-
sons: (1) it is important to keep the baseline failure rate up to date;
constraints may lose their significance if the baseline rate changes.
(2) there may be other constraints with larger significant decreases



in failure rate; halting its exploration, Aviso may settle for a non-
optimal constraint.

6.2.1 Handling Multiple Failures
Up to this point, our discussion has assumed that all failures can
benefit from a common pool of constraints. However, programs are
likely to have more than one type of failure, stemming from more
than one bug. Aviso also deals with multiple failures. The key is to
maintain a separate model for each failure class. A failure class is
identified by the content of the RPB at the point of failure. When
a failure occurs, the post-failure RPB is compared to the RPBs
collected from failures in each failure class, using symmetric set
difference. The RPB is assigned to the class to which it is most
similar, unless it is not at least 80% similar to any class, in which
case a new failure class is created.

When a program instance starts and queries the framework
for constraints, Aviso selects a constraint from each failure class
according to its own model. The program instance is then sent one
constraint per class. The constraint-less failure rate information is
shared across classes. On a failure or successful run, all classes’
models are updated.

There may be two unrelated failures that occur with similar
RPBs. If the failures are assigned to the same class, only one
constraint will be applied to starting program instances. As a result,
it is possible that only one failure or the other will be prevented. We
accommodate this situation by allowing Aviso to split a failure class
in two if no constraint significantly decreases the failure rate after
a fixed number of experiments. The purpose of this process is to
select two constraints for what was previously a single failure class
and thereby prevent both failures.

7. System Implementation
We built a complete implementation of Aviso including the profiler,
instrumenting compiler, runtime system, and the constraint selec-
tion and avoidance-sharing framework1. We implemented the shar-
ing profiler using PIN [14]. Dominance pruning and event place-
ment were implemented in LLVM [9]. The framework and runtime
were implemented from scratch.

7.1 Framework Implementation
The framework was implemented in about 3000 lines of Go code.
The statistical models and constraint generation were implemented
from scratch in the framework.

The framework exposes a messaging API. The API provides
calls for the runtime to query for constraints, to send RPBs for
sampled, non-failing periods and after failures occur, and to send
logical time ticks. The API works over the network, via HTTP.
The framework and runtime-enabled program instances form a dis-
tributed system that implements Aviso. Using HTTP as the messag-
ing protocol for the distributed system makes it flexible, portable,
and suitable for use in cloud environments such as Google Ap-
pEngine or Amazon EC2. Furthermore, its simple interface lets the
framework be trivially replicated and lets replicas be load balanced
for further scalability. Replicas’ statistical models could be kept
consistent via consensus, or simply operate independently.

7.2 Runtime Implementation
We implemented the runtime in a library with an event han-
dling API. Synchronization, signal and sharing events make calls
to the API. When a thread makes an event call, it records the
event with a timestamp in a thread-local queue. When the thread
ends, the timestamped events are serialized to a file. Timestamps

1 Aviso will be available for download at the authors’ website.

are collected at nanosecond resolution using clock gettime’s
CLOCK MONOTONIC clock. We use thread-local event queues and
timestamps to collect events because they are faster than an earlier
version of our system, which used a serializing event queue shared
across threads.

Constraints are shared object plugins to the runtime. Each ex-
poses a factory method to instantiate its constraint. When the pro-
gram starts up, the runtime receives constraint descriptions as text.
The runtime uses a simple, custom, templated code generator to
produce C++ code from the text. We then call out to gcc to compile
the code to a shared library that is loaded by the program. Pro-
gram instances cache compiled constraints, so code generation and
compilation need only be performed once; subsequent executions
that call for the same constraint can reuse the previously generated
constraint plugin.

The runtime was built for concurrent performance. Its only
shared data structure is the state associated with active constraints;
everything else is thread-local. Accesses to the shared structure
are rare: each thread has a thread-local list of events that may
require an access to the shared structures. The common case is for
a thread executing an event to check its list and continue without
accessing the shared structure. Only when a thread hits an event
involved in a constraint must it consult the shared structure. This
arrangement minimizes the chance that Aviso’s data-structures will
lead to serialization and poor performance.

8. Evaluation
We evaluate Aviso along several dimensions. First, we show
Aviso’s efficacy in avoiding failures. Second, we show that Aviso’s
overheads are reasonable both during data collection and when ac-
tively avoiding failures. Third, we characterize Aviso’s constraint
selection process. Finally, we characterize the Aviso’s dynamic
behavior.

8.1 Experimental Setup
We evaluated Aviso using several buggy parallel programs.

Out-of-the-Box Benchmarks. Our main results are based on ex-
periments with one cloud application, one server application, and
one desktop application made to run with Aviso “out of the box”.
Memcached-1.4.4 is an in-memory key value store with an atomic-
ity violation that leads to data-structure corruption and lost updates
under heavy update load. We added a single assertion that detects
the data-structure corruption when a thread writes to a deallocated
table cell and aborts execution. The data-structure invariant that our
assertion checks is the cause of the lost updates, but the assertion is
oblivious to the lost update problem; to write the assertion, a pro-
grammer would not need to understand the lost update failure. We
manually added a single Aviso call to the server to send a logical
time update every 10,000 requests. Inserting this call was trivial
even without being familiar with the codebase. For profiling, we
initialized a key-value store with 10 keys storing integers that 8
threads accessed. We used a mix of accesses that was 90% reads
and 10% updates. For tests, we used a 10-key store and the same
thread count and operation mix.
Apache-2.0.46 is a web server with atomicity violations in its in-
memory cache subsystem that lead to crashes when concurrently
servicing many php script requests. Our server setup is Apache with
mod php loaded, in-memory caching enabled, and serving the time
of day via a php script. We added a single Aviso call to send a logi-
cal time update every 10,000 requests. As with Memcached, insert-
ing the call was trivial. For profiling, we used ApacheBench to
issue 1,000 requests from 8 concurrent request threads for a static
html page, then 1,000 requests from 8 threads for our php time
server. For tests, we let the server run continuously until a fail-



ure. We sent time-of-day requests in groups of 10,000. To vary the
workload, each group of requests was sent by a number of threads
uniformly randomly chosen to be between 2 and 8.
AGet-0.4 (Figure 1) is a download accelerator with an atomicity
violation in its signal handler that leads to output corruption. To
detect failures, we manually added an assertion that aborts when it
detects output corruption. The assertion compares a count of bytes
written to the downloaded file to the sum of per-thread byte counts.
The symptom of the failure is that these counts are not equal. Note
that adding this assertion did not require understanding how to
prevent the failure. We needed to understand only that the number
of written bytes reported by AGet should match the number of
bytes in the output file. To profile AGet, we downloaded a 1MB file
using 8 threads from a local network resource twice, once letting
it complete and once interrupting it with SIGINT. To test AGet,
we started downloading a 700MB Linux image and interrupted the
download with a SIGINT after 1s.

Schedule-patched Benchmarks. To further demonstrate Aviso’s
applicability, we conducted experiments with two other desktop
programs. Unlike our first three benchmarks, we altered these two
programs to amplify their failure rate. We applied patches that use
sleep statements to lead execution toward failing schedules, similar
to prior work [5, 27, 28]. These schedule patches are not essential
– Aviso could be applied without them; we used them to facili-
tate experiments. Despite the patches, these results show Aviso’s
effectiveness for several reasons. First, the program is unchanged
except for a single call to usleep. Second, the increased failure
rate does not affect constraint generation or selection, except to re-
duce the time required for both. Third, events involved in the failure
are identical in the patched and non-patched versions.
Transmission-1.42 (Figure 7) is a bittorrent client with a use-
before-initialize error that leads to an assertion failure. To pro-
file Transmission, we downloaded a Linux iso torrent without the
schedule-altering patch. We ran tests on Transmission by running
with the schedule-altering patch applied and downloading a non-
existent torrent, which triggers the failure, causing a crash.
PBZip2-0.9.1 is a compression utility with a use-after-free error
that leads to a crash. To profile PBZip2, we ran it under our profiler
and first compressed, then decompressed, a 10MB text file. We
experimented with PBZip2 by compressing a 250MB file. Aviso
diagnosed the failure by watching for crashes and failed assertions.

8.2 Bug Avoidance Efficacy
Our main finding is that Aviso made our benchmarks fail less
frequently, as shown on the plots in Figure 9. The plots show on
a log scale the number of failures observed in our experiments for
Aviso and for the baseline without Aviso, as well as a theoretical
worst case. The slope at a point on a curve is the instantaneous
failure rate at that point.

For all benchmarks, Aviso’s curve is lower than the baseline,
indicating a decrease in the number of failures experienced. In
Apache’s case, Aviso decreased the number of failures exhibited
in our experiments by two orders of magnitude. Memcached saw a
decrease in failures of more than an order of magnitude. Other cases
had less pronounced decreases, but still benefited from Aviso.

These data elucidate how Aviso searches for the most effective
constraint. For the first few runs of the program, the number of fail-
ures for Aviso is commensurate with the number for the baseline.
During these first runs, Aviso is building and refining its statisti-
cal model. After a few runs, Aviso’s model guides it to an effective
constraint. At this point, the slope of the curve becomes flatter than
the baseline, i.e., Aviso begins to consistently choose a constraint
or constraints that avoid failures.

Performance Overhead
Coll. Only Coll. & Avoid

Transmission 8.8% 29.5%
AGet 26.2% 30.7%
PBZip2 2.6% 5.5%
Memcached 17.3% 16.7%
Apache 12.1% 15.9%

Table 1. Aviso’s runtime overheads. These overheads are rela-
tive to baseline execution when collecting events only and when
collecting events and avoiding failures.

8.3 Performance
Table 1 shows that Aviso’s runtime overhead is low. Column 2 is the
overhead of event monitoring only. The overhead ranges from less
than 3% for PBZip2 to 26.2% for AGet, with an average overhead
of 13.4%. These results show that when Aviso is only collecting
information, the performance overhead is tolerable.
Collection and Avoidance Overhead. Column 4 shows the com-
bined overhead of event monitoring and avoidance. Avoiding fail-
ures does not prohibitively increase Aviso’s overhead. For Mem-
cached, the overhead is about the same as that of event collection
alone; for Transmission, our worst case increase, the overhead is
20.7% greater than the overhead of event collection.

PBZip2 has very low overhead for both event collection and
avoidance because threads spend a majority of the execution in
a compression routine in libbz2. Avoidance adds little to the
overhead because the most effective constraint for PBZip2 involves
events that execute during shutdown; constraint activation checks
and delays need only occur during shutdown, so they do not impede
the execution.

AGet’s event collection overhead is high relative to our other
benchmarks because a majority of the program’s execution is in a
tight loop that includes two event calls. AGet’s avoidance overhead
is only slightly higher than its collection overhead because the
events involved in the constraints that Aviso found effective execute
only during signal handling. The increased overhead is due to an
increase in constraint activation checks, not delays.

Memcached’s overhead is nearly the same for both collection
and avoidance: the constraints that Aviso found effective are not
activated in the program’s common case. The events involved in
effective constraints execute only when the number of digits in the
number stored in one of Memcached’s table cells increases, which
occurs rarely.

The key finding, then, is that when collecting events only, Aviso
imposes a low performance penalty. When avoiding failures, the
overhead is only slightly higher.

Contrasting Improved Reliability with Aviso’s Overhead The
data show that Aviso’s overhead is non-negligible. These overheads
are acceptable for two main reasons. First, the increase in reliabil-
ity comes immediately and without the need for the programmer
to understand how to fix the program. Patches are hard to write
correctly, and hand-written patches may introduce bugs or degrade
performance. For example, Memcached developers left the failure
we studied unpatched for nearly a year after its initial report. They
cited a 7% performance “regression” as one roadblock to com-
mitting a patch [1]. Aviso imposes a roughly similar performance
overhead (16.7%) to the manually crafted solution and decreases
the rate at which the failure occurs by nearly two orders of magni-
tude. Aviso does not require the programmer to understand how to
fix the bug, let alone correctly patch the code to fix it. Furthermore,
because Aviso operates automatically the gap between the first fail-
ure and Aviso’s failure avoidance is a few minutes rather than the
year required for the manual patch.
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Figure 9. Aviso’s improvement in reliability. We show data for (a)Memcached, (b)Apache, (c)AGet, (d)PBZip2, and (e)Transmission. The
x-axis shows execution time in number of trials – logical time ticks for servers, executions for standalone applications. We ran each program
for 8000 trials. The y-axis shows the the number of failures that have occurred at a given point in time on a log scale. The top (black) curve
shows the worst case: every execution is a failure. The middle (red) curve shows the reliability of the baseline, compiled and run completely
without Aviso. The bottom (green) curve shows the reliability with Aviso.

Second, Aviso’s performance overhead saves programs from
the potentially severe costs associated with failures. For example,
Memcached’s failure is a lost update that permits the store to be pe-
riodically corrupted but to continue executing. In safety-critical ap-
plications, data corruption is likely worse than performance degra-
dation. Aviso provides the option of avoiding Memcached’s data
corruption at the cost of a modest performance hit.

8.4 Constraint Generation and Selection
Figure 10 characterizes how Aviso generates and selects con-
straints. Figure 10(a) shows that Aviso needs to experiment with
only a small fraction of the constraints it generates to find effective
constraints. Notice that the lower portion of the bars is considerably
smaller than the upper portion: Aviso made only a small fraction of
constraints available to program instances. Aviso effectively avoids
failures, so this result shows that it selects effective constraints
without having to observe many program instances.

Figure 10(b) shows that the number of constraints that Aviso
makes available to program instances is small and for most of
our benchmarks, most of the execution time was spent using a
single effective constraint. These data reinforce the findings from
Figure 10(a), i.e., Aviso finds effective constraints after selecting
and distributing only a few using its statistical model.

For Apache, Memcached, and AGet, the constraint represented
by the bottom bar segment was used by Aviso for 92-99.7% of
the execution time during our tests. For PBZip2, the bottom two
bar segments account for nearly 80% of execution time; Aviso
chose between these two constraints a majority of the time. These
frequently chosen bottom segments all represent constraints that
led to a statistically significant decrease in failure rates.

In concert with Figure 10(a), this result illustrates how Aviso
works: Aviso initially selects effective constraints without having
to experiment with them or directly observe their impact on failure
rates. It chooses good constraints without experimenting by using
its predictive event pair model. After initially selecting a constraint
that turns out to be effective (i.e., the event pair model’s prediction
was a good one), the failure feedback model biases Aviso to select
the same constraint again. The data directly show this phenomenon.
For example, in Apache’s case, Aviso selected 16 different con-
straints, experimented with each, and observed their impact on the
failure rate. The 16th turned out to be effective, preventing nearly
all future occurrences of the failure. Due to the constraint’s success,
the failure feedback model ensured it was subsequently selected.

Aviso selects and tests constraints differently for Transmission
than for the other benchmarks. Transmission’s lower 14 bar seg-
ments provided a significant decrease in the failure rate. Aviso used
one of these 14 constraints for about 85% of execution time.

The data in Figure 10(c) explain why Transmission is different
and help further characterize Aviso’s event pair model. The bar

height shows the ratio of the total number of constraints generated
during our experiments to the total number of pairs in the event
pair model that were observed in sampled correct RPBs. We call
this ratio the coverage of the model. If the event model has fewer
pairs than constraints – i.e., has low coverage – it is likely to predict
effective constraints poorly. If the model has more pairs, it is more
likely to be useful in assigning meaningful selection probabilities
to more constraints. Note that coverage may exceed 1.0 if pairs in
the model never show up in a post-failure RPB.

Transmission’s model coverage is zero. The structure of Trans-
mission’s failure explains why: the failure occurs very early in the
program’s execution. The event pair model is primarily built from
RPBs sampled from portions of correct execution. Transmission
crashes early, so no RPBs are sampled, and the event pair model
is of little use. Transmission’s zero model coverage explains why
Aviso was forced to experiment with more different constraints.
Instead of predicting effective constraints, Aviso relied on the re-
sults of its experiments – the failure feedback model – to determine
which constraints worked best.

Our other benchmarks had event pair models with higher cov-
erage. Apache’s model contained nearly the same number of pairs
as there were constraints. Memcached and AGet also had models
with high coverage. Looking back to Figures 10(a) and (b), the im-
pact of higher model coverage is clear. For benchmarks with higher
model coverage, the fraction of constraints used is lower and the
fraction of execution time spent using a small number of effective
constraints is higher.

In summary, Figure 10 shows that when Aviso’s statistical
model has observed enough correct execution behavior, it makes
good predictions, and Aviso is effective. If the model has low
coverage, Aviso still selects effective constraints using its failure-
feedback model.

8.5 Characterizing Dynamic Behavior
Using an instrumented version of the Aviso runtime, we character-
ized its dynamic behavior. For these experiments, we fixed a few
runtime parameters: we chose the constraint used most frequently
by Aviso during our main experiments, and we used a single fixed-
size input. For PBZip2, we used the 250MB input file. For AGet,
we downloaded a Linux image and interrupted execution (without
crashing). For Apache, we issued 1M requests from 8 concurrent
request threads. For Transmission, we downloaded a Linux image
torrent, while for Memcached, we ran 80,000 client requests.

Figure 10(d) plots the rolling average time between events in
µs during our experiments. These data justify Aviso’s delay length.
Recall that to avoid failures, events must be reordered by delays.
In order to reorder events, events must be delayed long enough
to allow an event in another thread to execute. The data show
that the delay time is longer than the average inter-event time of
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Figure 10. Characterizing Aviso’s behavior.

most benchmarks. In the average case, a delay will reorder some
events. Despite PBZip2’s large average inter-event time, Aviso’s
delay length is adequate because the length of the interval between
events involved in the failure is less than the delay length.

The data in Figure 10(d) also help explain Aviso’s overheads.
For PBZip2, the average time between events is several orders of
magnitude larger than for other applications. The length of the
interval makes sense because PBZip2 spends most of its time in
a compression library call. It is likely that PBZip2’s long time
between events contributes to the low overhead reported in Table 1.
Each of the other benchmarks has a shorter interval between events
than PBZip2. Correspondingly, the event collection overheads in
Table 1 for the other benchmarks are slightly higher than PBZip2’s.

AGet, with the highest performance overhead, has several
events on its inner loop. We expected these events to result in a
short interval between events, explaining its overhead. However,
as Figure 10(d) shows, AGet’s inter-event interval was moder-
ately longer than most other cases. Table 2 shows data that explain
AGet’s performance and further characterizes Aviso.

The data in the table illustrate several different sources of
overhead: excessively frequent events, leading to many discarded
events; constraint activation checks; and delays due to constraints.
AGet’s overhead is likely to come from frequent constraint acti-
vation checks. In AGet, 1 out of every 3 events requires the extra
computation of a constraint activation check. In contrast, 0.4% of

Sharing Events Sync/Sig Events Constraints
# Evts # Discard # Evts # Discard # Chks # Strt # Delays

Apache 44.6M 37.9M 1.5M 34K 27K 65 56
Memcached 200K 13K 1.2M 204K 87K 16 87
AGet 46K 0 92K 2 46K 5 40
PBZip2 227 0 1042 4 81 8 8
Transmission 10.6M 5.0M 2.0M 5 96 1 1

Table 2. Aviso’s dynamic behavior. Columns 2 and 3 show the
total number of sharing events and the number of sharing events
discarded due to online pruning. Columns 4 and 5 show the to-
tal number and number discarded of synchronization and signaling
events. Column 5 shows the number of times an event in an avail-
able constraint executes, requiring a check to see if the event acti-
vates the constraint. Column 6 shows the number of times a check
actually leads to a constraint’s instantiation. Column 7 shows the
number of times an event is delayed by a constraint.

Apache’s and 7.25% of Memcached’s events required such checks.
Constraint activation checks require holding a lock and accessing
shared state, so they are more costly than those that do not.

The data in Table 2 show that a large fraction of Apache’s events
(over 80%) were discarded due to online pruning. The high rate
of discards suggests that events are frequent; the very short inter-
event time shown in Figure 10(d) corroborates this fact. Intuitively,
such high-frequency events seem like a performance problem; how-
ever, Apache’s event frequency did not impose excessive overhead
– around 15%. Most of Apache’s events did not require activation
checks, instantiations, or delays. As a result, its events were inex-
pensive, requiring just a few access to thread-local memory. The
absence of complex computation or serialization on global state is
likely the reason for Apache’s low overhead.

Delays were very infrequent across all our benchmarks, occur-
ring mostly in uncommon case code. In PBZip2 8 worker threads
delayed a cleanup thread. In Transmission, a delay during startup
code prevented a use-before-initialization error. In Apache, a delay
during a request cache flush prevented a crash. In AGet, a delay
during signal handling prevented a crash. In Memcached, a delay
during a rare-case update prevented data corruption.

To summarize, delays were not a problem in our tests because
they were infrequent and in rare-path code. Event frequency alone
did not dictate performance, although having very infrequent events
seemed to lead to lower overhead (e.g., PBZip2). Constraint activa-
tion checks seemed to be a more costly source of overhead than we
expected, especially when events were frequent (e.g., AGet).

9. Related Work
There has been a great deal of recent work on techniques dealing
with software failures. Due to space constraints, we focus here on
work that deals with concurrency-related failures.

Loom [26] is a system for patching concurrency bugs in running
programs. Loom is like Aviso in that it aims to prevent failures
between when a failure occurs, and when a patch is released. Aviso
differs from Loom in an important and fundamental way: Loom
requires the user to understand the cause of a failure well-enough
to write a work-around. Aviso is automated, requiring nothing from
the programmer in most cases to produce a work-around constraint.
For some non-fail-stop errors, the user must recognize a bug’s
symptom, which is easier than understanding the cause.

There has been a lot of work on avoiding atomicity viola-
tions [4, 12, 13, 21, 22]. Isolator [21] and ToleRace [22] prevent
single-variable atomicity violations, but do not handle the broader
class of failures addressed by Aviso. AFix [4] produces bytecode
patches that fix atomicity bugs. AFix is like Aviso in that it elim-
inates the need to think about a failure’s cause. Unlike Aviso it



is limited to atomicity errors. Atom-Aid [13] and ColorSafe [12]
address single- and multi-variable atomicity bugs. These systems
are unlike Aviso in that they only handle atomicity bugs, and
need special hardware support. Other systems have proposed us-
ing hardware support to force executions to adhere to tested sched-
ules [27, 28]. These systems are similar to Aviso in that they aim
to prevent concurrency-related failures. They differ in that they use
hardware, and can ensure reliability only in tested situations. Aviso
avoids failures even in untested code. Dimmunix [7] and Commu-
nix [6] provide automated deadlock immunity for Java programs.
Like Aviso these systems identify and avoid failures mostly auto-
matically, and Communix systems share failure avoidance capabil-
ity. These systems are limited in that they only address deadlocks.

Determinism [2, 15, 17] enforces one event interleaving in every
execution. Aviso also affects event orderings. Aviso differs in that
it does not restrict the interleaving of the entire program. Instead,
all possible executions are permitted, except where restricted by
constraints.
Avoiding Other Failures There is other work on failure avoidance
not specifically for concurrency. Rx [20] uses checkpointing to re-
cover from failures. Aviso differs from Rx in that it avoids failures,
rather than just failing and recovering, and Aviso does not require
checkpointing support. Failure-oblivious computing [23] permits
execution to continue after a failure. This technique works well for
some non-critical errors, but is otherwise of limited use.

Exterminator [16] was among the first to explore what it called
“collaborative bug correction”, inspiring Aviso’s cooperative ap-
proach to failure avoidance. Unlike Aviso, Exterminator focuses on
avoiding failures due memory errors (e.g., buffer overflows, etc.),
not concurrency errors, and it does so with just slightly higher over-
heads than Aviso (25% average runtime overhead).

ClearView [19] identifies invariants, and when they are violated
produces a patch preventing future violations. ClearView is simi-
lar to Aviso in that it provides avoidance by avoiding behavior ob-
served in failing runs. ClearView and Aviso both monitor their im-
pact to determine the most effective strategy (constraints in Aviso,
and patches in ClearView). Aviso differs in that it does not use in-
variants, and focuses on concurrency.

10. Conclusions
We presented Aviso, a system that automatically avoids concurrency-
related program failures by empirically determining fault-free ex-
ecution schedules. Aviso leverages a community of instances of a
program and uses statistical techniques to quickly determine which
program events (and their order) are the culprit of a failure. We
built Aviso in software only (not relying on special hardware),
and our evaluation showed that Aviso increases reliability signifi-
cantly (orders of magnitude reduction in failure rate in some cases)
and leads to overheads acceptable in real production runs. As our
future work, we will explore expanding our statistical model to in-
corporate quality of service criteria, and using Aviso to implement
speculative, empirically tuned performance optimizations.
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