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Abstract
Data-race freedom is a valuable safety property for mul-

tithreaded programs that helps with catching bugs, simpli-
fying memory consistency model semantics, and verifying
and enforcing both atomicity and determinism. Unfortu-
nately, existing software-only dynamic race detectors are
precise but slow; proposals with hardware support offer
higher performance but are imprecise. Both precision and
performance are necessary to achieve the many advantages
always-on dynamic race detection could provide.

To resolve this trade-off, we propose RADISH, a hybrid
hardware-software dynamic race detector that is always-on
and fully precise. In RADISH, hardware caches a princi-
pled subset of the metadata necessary for race detection;
this subset allows the vast majority of race checks to occur
completely in hardware. A flexible software layer handles
persistence of race detection metadata on cache evictions
and occasional queries to this expanded set of metadata.
We show that RADISH is correct by proving equivalence to
a conventional happens-before race detector.

Our design has modest hardware complexity: caches are
completely unmodified and we piggy-back on existing co-
herence messages but do not otherwise modify the protocol.
Furthermore,RADISH can leverage type-safe languages to
reduce overheads substantially. Our evaluation of a simu-
lated 8-core RADISH processor using PARSEC benchmarks
shows runtime overheads from negligible to 2x, outperform-
ing the leading software-only race detector by 2x-37x.

1 Introduction
Data-race freedom is an important safety property for

multithreaded programs. Many multithreaded program-
ming errors stem from data races. Memory consistency
models of mainstream languages guarantee sequential con-
sistency for data-race-free programs, leaving racy programs
with weaker or undefined semantics. Moreover, there is no
easy way to tell when a program is race-free: a racy program
runs without any notification when sequential consistency is
violated. Many static (e.g., [1]) and dynamic (e.g., [2]) data-

race detection algorithms serve as useful debugging aids,
but their utility is limited by precision or performance: they
are either unsound (missing real races), incomplete (report-
ing false races), or have high performance overheads.1

To simplify the semantics of multithreaded programs
with races, researchers have proposed eliminating data
races entirely [3], through language restrictions that make
writing racy programs impossible [4, 5] and by converting
all data races [6] – or only those races that may violate se-
quential consistency [7, 8] – into fail-stop runtime errors.
Our focus is on runtime detection of all data races, in order
to support arbitrary multithreaded programs and to serve as
a foundation for enforcing richer safety properties.

This paper introduces RADISH, a hybrid hardware-
software data-race detector that is sound (missing no races)
and complete (reporting no false races) with performance
suitable for most deployment environments. RADISH is the
first race detector to achieve this combination of precision
and performance. RADISH uses the same vector-clock ap-
proach to precise happens-before race detection as software
race detectors like FastTrack [2], and provides high perfor-
mance by storing a useful subset of race detection metadata
on-chip in a hardware-managed format. This on-chip meta-
data allows most race checks to occur completely in hard-
ware with low latency. A simple software layer is respon-
sible for persisting metadata when it overflows hardware’s
resources, and for using this metadata to check for races
when hardware metadata is insufficient.

To help reduce the number of data-race checks that
it must perform, RADISH uses cache coherence to detect
when threads share data. To maintain precise data-race
detection at the byte level, RADISH augments coherence
messages with per-byte access history information, but re-
quires no changes to the actual coherence protocol. To
keep hardware complexity modest, the only additions to
each core are a small amount of state and logic for fast
SIMD-style vector-clock computations. Crucially, and un-

1We use the definitions of “sound” and “complete” common in the pro-
gramming languages community.
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like many previous hardware proposals, the design of the
timing-sensitive cache hierarchy is entirely unchanged by
RADISH and there is no dedicated hardware storage for per-
address race-detection metadata. While on-chip and man-
aged by hardware, per-address metadata is stored in dynam-
ically allocated cache lines that share the cache data array
with regular data. Thus there is no wasted hardware stor-
age capacity when running programs that do not require dy-
namic race detection (e.g., due to race-free programming
models). Furthermore, RADISH can leverage type safe lan-
guages to further reduce overheads.

Our evaluation shows that RADISH provides sound and
complete dynamic data-race detection with runtime over-
heads from negligible to 2x. We also show that, due to the
presence of metadata in on-chip caches, increasing cache
capacity is a straightforward and effective way of improv-
ing RADISH’s performance.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses why precise and inexpensive data-race de-
tection is a useful primitive for the analysis and enforce-
ment of many higher-level multithreaded safety properties.
Section 3 reviews happens-before race detection with vec-
tor clocks and analyzes the overheads in software-based
race detection. Section 4 describes the RADISH algorithm
along with its hardware and software components, and Sec-
tion 5 describes some useful optimizations. Section 6 eval-
uates RADISH’s performance via simulation. Finally, we
discuss related work (Section 7) and conclude (Section 8).
We demonstrate the correctness of RADISH formally in a
companion technical report [9].

2 Why Data-Race Detection?
Data races are typically the result of a programming er-

ror, and finding races is a good way to find bugs in pro-
grams. Besides this obvious use for precise always-on data-
race detection, there are two additional benefits. First, pro-
hibiting data races2 enables simpler and stronger memory
models than current mainstream languages provide. Sec-
ond, data-race detection is a foundation for enforcing and
verifying higher-level concurrency safety properties like
atomicity and determinism.

2.1 Simpler Memory Models
Efforts to formalize the memory models of Java [10]

and C++ [11] have shown that providing reasonable se-
mantics in the presence of data races is particularly compli-
cated. C++ “avoids” this problem by leaving racy programs
with undefined behavior. Attempts to provide guarantees
for racy Java programs have uncovered bugs in modern
JVM implementations and ambiguities in the Java Mem-
ory Model itself [12]. In contrast, an always-on race detec-
tor like RADISH guarantees atomicity and isolation of large

2Annotations can be used to disable race detection for intentional data
races, e.g., in lock-free data structures.

“interference-free regions” of code across synchronization
points [13], a stronger property than sequential consistency.

2.2 Enforcing Richer Safety Properties
Systems that verify or enforce safety properties like

atomicity and determinism typically interpose on program
execution only on synchronization and data races. How-
ever, data-race detection must be fully precise as missing
races can violate the safety property in question, and report-
ing false races can result in spurious verification failures.
Thus these systems [14, 15] typically implement a full race
detector, resulting in high overheads. A high-performance
data-race filter could avoid instrumentation for data-race-
free accesses, making always-on operation practical.

Sound and complete atomicity specification checking
[14], for example, only needs to instrument synchroniza-
tion operations and data races. A handler that fires on data
races can be used to determine when serializability is vio-
lated, if races are not regarded as fail-stop errors. Trans-
actional memory [16, 17] would require buffering support
via some orthogonal mechanism, but precise conflict detec-
tion could be handled entirely by data-race detection. Races
would trigger a rollback instead of a program error. De-
terminism enforcement [18] would require only linking
with a new synchronization library; races indicate sources
of nondeterminism that can be regarded as errors, resolved
deterministically, or logged for subsequent deterministic re-
play. Determinism checking [15, 19] would, like deter-
minism enforcement, require action only on synchroniza-
tion operations. The state space that must be explored while
model checking concurrent programs is dramatically re-
duced when races can be ignored [20, 21]. We also envision
new programming models that leverage language-level
data race exceptions (as in [6]) for safer optimistic concur-
rency, fault recovery, or improved security. Thus, investing
hardware resources in efficient, sound, and complete data-
race detection would provide a flexible and reusable foun-
dation for a variety of approaches to improving the quality
of concurrent software.

3 Happens-Before Race Detection
This section reviews the happens-before race detec-

tion algorithm employed (and optimized) by RADISH and
prior sound-and-complete data-race detectors. We then dis-
cuss experiments we performed profiling the runtime over-
heads of a state-of-the-art software race detector to high-
light the potential performance improvements of hardware-
accelerated race detection.

3.1 Happens-Before Race Detection
The happens-before relation hb−→ is a partial order over

events in a program trace [22]. Given events a and b, we say
a happens before b (and b happens after a), written a

hb−→ b,
if: (1) a precedes b in program order in the same thread; or
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(2) a precedes b in synchronization order, e.g., a lock release
relt(m) and subsequent acquire acqu(m); or (3) (a, b) is in
the transitive closure of program order and synchronization
order. Two events not ordered by happens-before are con-
current. Two memory accesses to the same address form a
data race if they are concurrent and at least one is a write.

Vector clocks can track the happens-before relation dur-
ing execution [23, 24]. A vector clock v stores one integer
logical clock per thread. There are two key binary oper-
ations on vector clocks: union is the element-wise maxi-
mum of two vector clocks (v1 t v2 = v3 s.t. ∀t . v3(t) =
max(v1(t), v2(t))); happens-before is the element-wise
comparison of two vector clocks (va v vb is defined to
mean ∀t . va(t) ≤ vb(t)). A vector-clock race detector
keeps four kinds of state: Vector clock Ct stores the last
time in each thread that happens before thread t’s current
logical time. Vector clock Lm stores the last time in each
thread that happens before the last release of lock m. Vec-
tor clock Wx stores the time of each thread’s last write to
address x. Vector clock Rx stores the time of each thread’s
last read of address x since the last write by any thread. If
thread t has not read x since this write, then Rx(t) = 0.

Initially, all L, R, and W vector clocks are set to v0,
where ∀t . v0(t) = 0. Each thread t’s initial vector clock is
Ct, where Ct(t) = 1 and ∀u 6= t . Ct(u) = 0. On a lock
acquire acqt(m), we update Ct to Ct t Lm. By acquiring
lock m, thread t has synchronized with all events that hap-
pen before the last release of m, so all these events happen
before all subsequent events in t. On a lock release relt(m),
we update Lm to Ct, capturing all events that happen before
this release. We then increment t’s entry in its own vector
clock Ct to ensure that subsequent events in t do not appear
to happen before the release t just performed. On a read
rdt(x), we first check if Wx v Ct. If this check fails, there
is a previous write to x that did not happen before this read,
so there is a data race. Otherwise, we set t’s entry in Rx

to t’s current logical clock, Ct(t). On a write wrt(x), we
check if Wx v Ct and Rx v Ct. If this check fails, there is
a previous access to x that did not happen before this write,
so there is a data race. Otherwise, we clear all last reads,
setting Rx to v0, and replace the last write with the current
write, such that Wx(t) = Ct(t) and ∀u 6= t . Wx(u) = 0.

By the definition of a data race, all writes to an address
must be totally ordered in race-free traces. Race detectors
such as Goldilocks [6] and FastTrack [2] leverage this ob-
servation by storing information about only a single last
write per address. For simplicity of presentation, we retain
a last-write vector clock for each address, but observe that
it never has more than one non-zero entry.

3.2 Software Race Detection Overheads
Software-only data-race detectors [2, 6, 25, 26] are often

too slow for always-on use (Figure 1). The overhead can
be attributed to four broad categories: (1) the raw computa-
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Figure 1. FastTrack execution profiles. Numbers atop each bar
indicate FastTrack’s slowdown over native execution.

tion cost of running the race detection algorithm; (2) enforc-
ing atomicity of each memory access and its race check (a
lack of atomicity leads to both false and missed races); (3)
the instrumentation costs of injecting race checks for every
memory access; and (4) other costs such as the cache pol-
lution of race-detection metadata. We approximated these
costs for the state-of-the-art FastTrack dynamic race detec-
tor [2], by running the Java Grande benchmark suite on an
8-core machine with different parts of the race detection
code disabled (Figure 1). We found that the costs of compu-
tation, atomicity, and instrumentation are dominant, though
in varying degrees across benchmarks. RADISH directly ad-
dresses these costs: the atomicity of race checks is enforced
by a lightweight hardware mechanism, race-check compu-
tations are frequently done without software assistance, and
instrumentation cost is low due to hardware support.

4 The RADISH System
This section discusses the intuition behind RADISH.

Then, we describe what RADISH adds to a conventional pro-
cessor design (Section 4.2), the metadata that RADISH uses
(Sections 4.3 and 4.4), the operations RADISH performs at
each memory access (Section 4.5), and the RADISH soft-
ware layer (Section 4.6). We conclude with a short example
of RADISH’s operation (Section 4.7).

4.1 The Intuition Behind RADISH
The intuition behind RADISH’s hybrid hardware-

software approach to data-race detection is to start with a
software vector-clock data-race detector and map its most
heavily used operations and metadata to hardware as fre-
quently as possible. RADISH leverages three basic obser-
vations to accomplish this: (1) nearly all the work that a
race detector must do occurs in response to coherence traf-
fic so the RADISH mechanisms are rarely activated outside
these high-latency events; (2) the spatial and temporal local-
ity exhibited by memory references extends to the metadata
necessary for race detection, so the existing cache hierarchy
can be used to accelerate metadata accesses; and (3) there
is temporal locality in the data referenced by concurrently
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Figure 2. Overview of the RADISH processor core. State
added by RADISH is shaded.

scheduled threads, so while RADISH only caches metadata
for co-scheduled threads this is often sufficient to handle
race checks completely in hardware.

We start from the vector-clock algorithm described in
Section 3.1 and map parts of it into hardware structures as
follows. Each core keeps a portion of its local vector clock
Ct on chip, with an entry for each other actively executing
thread. Thus, the size of this partial vector clock is bounded
by the number of processors. When thread t accesses byte
x and needs to access the metadata for x, t’s entries Rx(t)
and Wx(t) in the last-reads and last-write vector clocks for
x are stored as metadata in the cache data array itself, us-
ing space otherwise available for data, but obviating the
need for dedicated storage. Moreover, locations that can be
proven race-free (e.g., local variables) require no metadata,
freeing cache capacity for other data or metadata. Lock vec-
tor clocks (Lm) are handled purely in software since they
are accessed infrequently.

Since RADISH stores only a subset of the full metadata
needed for race detection on-chip (only the vector clocks
for actively executing threads, and only a subset of read and
write vector clocks for these threads, are stored on-chip), a
crucial question is how to reason soundly about races from
this partial view. We solve this problem with three insights.
First, we maintain in-hardware status information for each
location x that is cached on-chip, summarizing the num-
ber and type (read/write) of x’s vector-clock entries that are
cached in hardware. Second, we rely on software to virtual-
ize limited hardware resources, by storing and providing ac-
cess to metadata upon last-level cache evictions and context
switches. Finally, we memoize the result of vector-clock
computations using local permissions. This is particularly
helpful for race checks performed in software, because they
are expensive and require metadata not resident in hardware
caches. Memoizing their results as permissions helps avoid
repeated expensive checks. The rest of this section explains
in detail how RADISH implements these solutions.

4.2 The RADISH Architecture
RADISH makes only minimal changes to a conventional

bus-based CMP architecture. Figure 2 shows the additional
state added by RADISH with shaded blocks. A per-core

vector clock contains a 64-bit clock for each processor in
the system, including the local processor. The clock table
manages the vector-clock values used by hardware; for effi-
ciency, RADISH employs a reference-counting scheme that
we describe later (Section 5.1). Finally, the RADISH logic
implements the RADISH algorithm, including the vector-
clock operations union (t) and happens-before (v), which
can take advantage of SIMD parallelism. RADISH pro-
vides atomicity for each memory access, including its cor-
responding metadata access and race check, by detecting
concurrent remote data accesses to the same location. Any
such remote access must be the result of a data race. This
mechanism uses RADISH’s existing precise byte-level com-
munication tracking.

Crucially, RADISH does not change the structure or tim-
ing of any portion of the cache hierarchy. Metadata is
stored in the caches just like regular data is, and competes
for cache capacity just like regular data does. This design
choice ensures the critical path latency of cache hits is un-
changed, and also ensures that the processor runs with full
cache capacity when RADISH is disabled if race detection
is not wanted for an application. As metadata is allocated
dynamically, any static information about race-freedom can
reduce RADISH’s space and runtime overheads even further.

4.3 RADISH Metadata
RADISH maintains metadata for each location of virtual

memory (discussed below), as well as the per-core partial
vector clock mentioned previously. This per-core vector
clock is accessible to software, as synchronization opera-
tions must read and write it. The vector clocks associated
with synchronization objects are accessed relatively infre-
quently and thus can be managed by a RADISH-aware syn-
chronization library.

RADISH uses hardware to cache a subset of the full meta-
data needed for race detection, and uses software to persist
vector clock entries when they are evicted from the cache
hierarchy. There can thus be two versions of any given entry
of a vector clock – one in hardware and another in software.
There are no version conflicts because hardware is always
most up-to-date. In [9] we show that RADISH’s two vec-
tor clock versions can always be reconciled to the values a
conventional vector clock race detector maintains.

RADISH maintains metadata for each byte in memory,
since that is the finest granularity at which a program may
access memory, according to modern memory models [11,
10], though RADISH can exploit the type safety guarantees
of modern languages to soundly coarsen the metadata gran-
ularity for improved performance (Section 5.2). Without
reliable information on data element size, tracking accesses
with metadata for, e.g., every 2 bytes could find false races
if two threads concurrently write to the two different bytes.

The RADISH metadata for a byte of data consumes a total
of 2 bytes of space (Figure 3), though a more compact 1:1
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encoding is possible by leveraging type safety guarantees
(Section 5.2). 2 bytes of metadata per byte of data admits
a simple mapping from data to metadata: the location of
the metadata for address x is located at address base + 2x,
where base is chosen not to overlap with regular program
data (Figure 4). Metadata addresses are special physical ad-
dresses that only ever reside in the cache tag arrays – hard-
ware’s metadata does not occupy any physical memory, as
that would be redundant with software’s representation. The
metadata for a cache line’s worth of data is split across two
cache lines (as with cache lines A and D). These two meta-
data lines need not reside in the cache at the same time –
metadata is fetched on demand based on the corresponding
data being accessed. Other lines may use the compact meta-
data encoding (B) or may not need metadata at all (C) cour-
tesy of a previous static analysis. The “holes” in the data-
to-metadata mapping are unallocated and never fetched into
the cache, making room for other useful (meta)data.

Each processor uses a distinct region of the physical ad-
dress space for metadata. We can efficiently encode the fact
that a line contains metadata, and also the processor p to
which the metadata belongs, by stealing some high-order
bits from the physical address. This ownership information
allows metadata to live in shared caches. Upon eviction
from the last-level cache, metadata is stored by software,
which uses its own opaque format that occupies virtual
memory just like regular program data. Software-controlled

metadata is never touched by hardware, so its format can be
tuned to a particular run-time system, programming model,
or even application, for maximum efficiency.

In addition to read and write clocks, the RADISH meta-
data consists of two additional pieces of state (Figure 3):
in-hardware status and local permissions. This additional
metadata is crucial for getting the most leverage from the
metadata cached in hardware, so as to avoid consulting soft-
ware in common cases.
In-hardware status encodes how much of the metadata for
a given location resides in hardware. The status can be one
of: LASTWRITE, which says that the metadata recording
the most recent write to a location is in cache; ALLLAS-
TREADS, which says that the metadata recording all of the
most recent reads of a location are in cache; EVERYTHING,
which says that information about both the last reads and
last write is in cache; or finally INSOFTWARE, which says
that software must be consulted to determine the most re-
cent accesses for this location. RADISH uses in-hardware
status information to determine when a cache fill or race
check, which would otherwise require consulting software,
can in fact be done entirely in hardware.
Local permissions specify the actions that the local thread
can perform on a location without being involved in a data
race. The allowed actions are encoded as permissions: a
thread has READ, WRITE or NONE permissions to a loca-
tion. WRITE implies READ. Local permissions act as a
filter, guaranteeing that no race check is necessary if local
permissions are not violated. This allows RADISH to avoid
performing a race check (whether in software or fully in
hardware) on every memory access. Permissions violations
may or may not be the result of an actual race; additional
work is required to disambiguate these cases.

Metadata lines are not subject to the normal coherence
protocol, but are instead updated on evictions of remote
metadata lines, when local permissions are violated, and
whenever coherence events take place on their associated
data line. This latter property allows many metadata up-
dates to piggy-back on regular coherence messages; meta-
data evictions and local permissions violations are the only
sources of extra interprocessor communication in RADISH.

4.4 Maintaining In-Hardware Status and Local
Permissions

On a write, the in-hardware status for the bytes being
written is set to EVERYTHING. The EVERYTHING status
propagates via coherence messages to subsequent reads and
writes of x, and is only demoted when metadata for one
of these reads or writes to x is evicted, as detailed in Fig-
ure 5. Note there cannot be a valid write clock evicted while
the status is ALLLASTREADS: since the valid last write a
was already evicted, another write a′ would need to occur,
but a′ would have reset the status back to EVERYTHING.
The in-hardware status can also be set on reads, if the read
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triggers a software vector-clock check. If the check reveals
that thread t is the sole last reader of a location x since the
last write, then t’s read means the in-hardware status can
now be set to ALLLASTREADS. In RADISH, metadata evic-
tions from the last-level cache require a broadcast to down-
grade in-hardware status appropriately, but this cost can be
masked by the L2 miss that triggered the LLC eviction.

Local permissions are set for each byte x in a line
when it is brought into t’s cache, by broadcasting (concur-
rently with the fill) to gather the last accesses to x by other
scheduled threads. t then checks its happens-before rela-
tion with these remote accesses. Thread t gets WRITE per-
mission for x if t’s current logical time happens after the
last write to x and all last reads of x (i.e., Wx v Ct and
Rx v Ct), READ if t’s current logical time happens after
the last write to x but not all last reads of x (i.e., Wx v Ct

and Rx 6v Ct), and NONE otherwise. In-hardware status
determines whether the on-chip metadata suffices to attempt
each of these checks. If byte x has insufficient in-hardware
metadata, RADISH sets NONE permission for x; this is con-
servative but cheaper than consulting software to get a pre-
cise result, as t may never access x.

When a remote thread u performs a read or write of x,
we need to update t’s local permission for x to maintain its
guarantee. If u does a write to x, we must “downgrade” t’s
permission on x to NONE. If u does a read, then t’s permis-
sion must be downgraded to READ as well, since t’s current
logical time no longer happens after all last accesses to x,
making a write unsafe. If t’s permission for x was previ-
ously NONE, it is unchanged – downgrading never increases
permissions. It is sound to perform downgrades only on co-
herence events and cache fills as shown in [9].

4.5 RADISH Runtime Checks
Race checks in RADISH are a 3-stage process: a per-

missions check, a hardware race check, and a software race
check (Figure 6). First, a thread t accesses a memory loca-
tion x. The load or store instruction may be marked stati-
cally as race-free (e.g., a compiler may tag accesses to non-
escaping local variables), or the location accessed may re-
side on a page tagged as containing only race-free locations
(e.g. thread-local storage); in these cases no further work is

necessary. Otherwise, we consult t’s metadata for x; if the
metadata is not in the local processor’s cache it is fetched
from other caches or software (Section 4.6).

Once t’s metadata for location x is in cache, the first
step of a RADISH race check is a permissions check: if
local permissions allow the access, no further race check-
ing is necessary. A hardware race check is performed if
the permissions do not allow the access to proceed. A hard-
ware race check consults the precise read/write clock values
from other caches, together with the local in-hardware sta-
tus metadata, to determine if the access to x is race-free.
Specifically, a read operation r is race-free if (1) r happens
after some last-read operation s (since s must happen after
the last write to x or a race would have been detected on one
of those previous accesses) or (2) the in-hardware status for
x is LASTWRITE and r happens after the last write. A write
operation w is race-free if and only if the in-hardware status
for x is EVERYTHING, and w happens after the last write
and all last reads.

Depending on the amount of state available in hardware,
the outcome of the hardware race check may be that a) there
definitely is a race, b) there definitely is not a race, or c)
there might be a race, e.g., there is no race with respect
to the in-cache data, but the in-hardware status is INSOFT-
WARE so there is additional relevant information in soft-
ware. A software race check is required only in case c).
To exploit spatial locality and amortize the overhead of in-
voking software, the software check performs a race check
for all data locations covered by the metadata line ` contain-
ing the metadata for x. These checks preemptively set local
permissions for all metadata in `.

4.6 The RADISH Software Interface
For RADISH, the system’s synchronization library

must be modified to update the per-core vector clocks on
synchronization operations, and to maintain a vector clock
with each synchronization object. There are also soft-
ware handlers for race checks and metadata evictions.
The race check handler is called on a memory operation
when hardware does not have enough information to prove
race-freedom. The race check handler may be called syn-
chronously or asynchronously. The eviction handler is
called when metadata is displaced and may be executed
asynchronously with respect to memory operations. Thus,
these handlers may execute on any available processor.

A software race check handler is passed, via regis-
ters, the physical address px of the location x that triggered
the check, as well as the current hardware entries for the
read/write vector clocks of x. px is used to index the vari-
able map: the central software data structure used by the
RADISH software layer. The variable map contains a map-
ping from physical addresses (of data) to software metadata
(e.g., read/write vector-clock pairs). Physical addresses are
used because they are convenient identifiers – since caches
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Event Software p0 running thread 0 p1 running thread 1 In-hardware

read vc write vc coh. state perms read write vc coh. state perms read write vc Status
(initial) 7,0,0 2,0,0 9,4 6,5 InSoftware
p0 read S W 9 2 Everything
p1 read W S R 5 0

p0 release 10,4
p1 acquire 9,5
p1 write I N 0 0 M W 0 5

p0 evict md -
p1 evict md 0,0,0 0,5,0 - InSoftware

Table 1. An example trace showing how RADISH metadata is updated. Empty cells indicate the value is the same as in the cell
above. The local component of each core’s vector clock is underlined.

are physically tagged, when evicting a metadata cache line
we identify it with its physical address to avoid any need for
reverse translation. These physical addresses do not allow
the program unmediated access to physical memory. When
the OS migrates physical pages, the variable map must be
updated accordingly, but a physically-indexed map keeps
the common case fast.

A software race check merges the hardware read/write
vector clock entries with the values from software (obtained
from the variable map) to obtain up-to-date read/write vec-
tor clocks (Rx and Wx in Section 3.1). Similarly, the en-
tries from the per-core partial vector clock (accessible via
new instructions) are used to obtain the up-to-date thread’s
vector clock (Ct). Once hardware and software values are
merged, the standard happens-before race check occurs. A
signal may be raised to indicate that a race has occurred.

To amortize the cost of invoking software, software race
checks verify the race-freedom of a single memory access,
but update hardware metadata for all locations in the cache
line with metadata from software and set the in-hardware
status for each location where software information is im-
ported into hardware.

The eviction handler is called whenever a metadata line
is evicted from the last-level cache. This handler is invoked
with the physical address p of the data corresponding to the
metadata being evicted; p is used to index the variable map
described previously. To process metadata evictions asyn-
chronously, evicted metadata lines are placed into a hard-
ware buffer. The eviction handler reads from this buffer via
special load instructions and updates the variable map with
the hardware values.

In RADISH, the software metadata representation is

opaque to hardware, allowing software to freely optimize
its metadata representation, e.g., to save space [27, 2] or to
leverage structured parallelism [28]. A software-managed
metadata format also admits compatibility with compacting
garbage collectors that move objects in physical memory.

On a context switch, per-core partial vector clocks must
be flushed into software, and all per-core clocks need to be
updated to replace entries for the descheduled thread with
entries for the incoming thread. The evicted metadata line
buffer can be cleared lazily, as entries are tagged with their
owner thread. The crucial issue is dealing with metadata
lines belonging to the descheduled thread, as they can oc-
cupy several MB of state. We observe that software can
conservatively approximate when its metadata is stale (i.e.,
when there exists metadata in hardware that is more up-to-
date) by setting a “potentially stale” bit whenever a software
check occurs (as a check must occur on the very first access
to a location, which brings metadata into hardware), and
clearing this bit when sufficient metadata has been evicted.

Using software’s conservative approximation of hard-
ware state, metadata lines can be flushed eagerly or lazily.
The eager approach uses software to flush these lines imme-
diately at the context switch, bringing all software metadata
up-to-date. Alternatively, flushing can be done lazily. At the
cost of stealing extra unused bits from the physical address
space, each thread ID can be allocated a region within the
metadata space of a processor. Thread IDs can be reused
across processes: as metadata lives in the physical address
space, the same thread ID in two different processes will be
isolated if the processes are isolated.3 When asked to per-

3If processes share memory, then shared regions must be flushed when-
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form a race check, software determines if its metadata is po-
tentially stale, and flushes a superset of the necessary entries
(even for descheduled threads) from hardware caches. With
lazy flushing, clock tables are saved on context switches to
ensure software interprets hardware metadata correctly.

4.7 An Example Trace
We now show RADISH’s operation on a short trace of

instructions. Table 1 shows how hardware metadata (local
permissions, read/write vector clock entries, per-core vec-
tor clocks, and in-hardware status) and software metadata
(only read/write vector clocks are shown for simplicity) are
updated in response to various events. For simplicity, events
for a single location x are shown. There are three threads,
but only threads 0 and 1 are scheduled (on processors p0
and p1, respectively).

Initially, there is no metadata cached in hardware. p0’s
load triggers a software race check, because the in-hardware
status INSOFTWARE indicates that there is insufficient in-
formation in hardware to check the access. The software
check brings information about p0’s previous write at time
2 into hardware; combined with p0’s read there is now com-
plete information about x in hardware and the in-hardware
status is upgraded to EVERYTHING. Furthermore, p0 ob-
tains WRITE permissions on x because p0 can soundly read
or write x without the need for further race checks. Next,
p1 performs a read that, due to the current in-hardware sta-
tus, can be checked without consulting software. Note that
p1 gets READ permissions, as it can perform further reads
of x without racing, but p0 retains its WRITE permissions
(though an immediate write by p0 would race). However,
since p0 has the cache line containing x in Shared state, it
cannot actually write to x without triggering a coherence
message. This message will downgrade p0’s local permis-
sions to READ, so the permissions check will fail and trig-
ger a deeper check that will catch the race.

Next, synchronization occurs from p0 to p1, which up-
dates both processors’ vector clocks. Then p1 performs a
write, which is well-synchronized with both the last write
(by p0) and the last read (also by p0). p1’s write down-
grades the local permissions for p0, and clears all other
hardware read/write clocks. Since p0’s clocks have been
reset, the read/write vector clocks in software do not change
when p0 evicts the metadata for x. Software’s metadata is
stale, but is brought up-to-date with p1’s eviction.

5 Further Optimizations
RADISH’s performance is greatly improved by three ad-

ditional optimizations. We show how to (1) reduce logical
clock rollovers, (2) leverage type-safe languages and (3) use
spare cores to offload the work of software race checks.

ever a new process is scheduled. The physical address space could be
shrunk further to accommodate process IDs, but the overhead (combined
with thread IDs) is likely to be too great.

5.1 Logical Clock Rollovers
RADISH metadata affords only 6 bits for storing logi-

cal clocks representing a processor’s last write or read of a
byte. The literal value stored in these 6 bits is interpreted
as an offset from a base clock maintained by the processor,
with one value reserved to mean “not accessed,” which is
distinct from “last accessed at base + 0.” This mechanism
can represent last accesses at no more than 63 consecutive
logical clocks within the cache at any time. To represent a
clock outside the available range, we must evict all meta-
data from the cache and reset to a compatible base clock.

To mitigate the performance impact of 6-bit clocks we
can interpret the bits as a pointer to a clock value in-
stead. We reference-count these pointed-to clocks (using
the “clock table” in Figure 2), updating counts when meta-
data is overwritten or evicted, to determine when they can
be recycled. New clocks are allocated on synchronization
that increments the local processor’s logical clock. The pro-
cessor now maintains a 63-entry table mapping 6-bit point-
ers to full logical clocks plus reference counts: using 64-bit
logical clocks and 24-bit reference counts, this table occu-
pies 700B. This garbage-collection scheme supports any 63
unique clocks in the cache at a time; they need not be con-
secutive, so running out is rare (as Section 6 shows).

5.2 Leveraging Type Safety
Type-safe languages provide the guarantee that, between

allocation and deallocation (or garbage collection), all ac-
cesses to an address x will be at the same granularity; com-
ponent bytes of multi-byte items are never accessed indi-
vidually and therefore their metadata is always identical.4

If RADISH knew this type safety guarantee, it could (1) ex-
ploit the presence of multi-byte data items to encode larger
read and write clock values to avoid rollover and (2) adopt
more compact metadata representations.

Type safety guarantees allow metadata coarsening:
merging the metadata storage for multi-byte items and stor-
ing larger read and write clocks to ease pressure on the
available clock range (Section 5.1). To interpret the contents
of variable-granularity metadata storage correctly, such as
when looking up local read and write clocks in response to
another processor’s request, granularity information must
be persisted with the metadata. In type-safe mode we learn
granularity lazily. Before an address has been accessed for
the first time, the granularity of metadata does not matter.
On the first access to an address, we use the width given by
the instruction to set its metadata granularity. The granular-
ity is encoded using the spare states available from encod-
ing in-hardware status and local permissions in 4 bits (Sec-
tion 4.3), and the additional storage available with coarser-

4Casting to differently-sized integers can be handled by performing
truncation/expansion only in registers, so that loads and stores always ac-
cess whole data items.

8



grained metadata. With this type safety optimization, byte-
granularity metadata is reference-counted (Section 5.1), and
all coarser-grained metadata is interpreted as an offset from
some base logical clock value – reference-counting for large
clock representations requires infeasible amounts of hard-
ware state. The extra room for encoding clock values makes
rollover an even rarer event.

Type safety’s consistent-granularity-access guarantee
also enables a more compact metadata encoding. If a data
line has no 1-byte items, then its metadata can fit in a sin-
gle cache line instead of two. 16-bit data items have stan-
dard 6-bit reference-counted clock values, and larger data
items can take advantage of metadata coarsening as before.
Since metadata lines do not participate in the coherence pro-
tocol, we encode whether a metadata line is in compact
or expanded mode with the bits used to maintain the co-
herence state. Using compact metadata lines does not al-
ter RADISH’s simple mapping from data to metadata lines;
rather it introduces “holes” wherever compact metadata is
used (Figure 4). As metadata cache lines are dynamically
allocated in RADISH, these holes free up cache capacity.

We can optimistically adopt the compact encoding when
a metadata line ` is filled without sacrificing correctness. If
there are no single-byte data items in `, then the compact
encoding is sufficient. Upon the first byte-sized access to `,
however, we must revert to the expanded metadata encod-
ing to be able to track byte accesses precisely. At this point,
the first such byte access has not yet occurred, so our com-
pact metadata encoding is still precise. RADISH hardware
allocates room in the cache for the second metadata cache
line `′, and then expands the metadata from ` to fill both
metadata lines. Finally, the byte access proceeds and the
metadata is updated precisely.

5.3 Asynchronous Software Checks
Software checks are one of the key sources of overhead

in RADISH. Performing them synchronously, i.e., immedi-
ately before a potentially racing load or store, provides guar-
anteed fail-stop semantics but also adds latency to a thread’s
critical path. Alternatively, these software checks can be
performed asynchronously; a thread that requires a software
check for location x enqueues a snapshot of x’s read and
write vector clocks (from hardware), and then proceeds as
if the software check had found no race. Spare cores then
subsequently perform these checks and validate the race-
free assumption. RADISH requires that all outstanding soft-
ware checks be completed at each synchronization opera-
tion and system call,5 to sandbox the ill effects of races and
to avoid the need to snapshot per-core vector clocks or soft-
ware state. The relaxed guarantees of asynchronous checks
support without modification all the checking and enforce-

5In theory, a thread may diverge due to a race and never reach the next
synchronization operation, leaving the race unreported. Bounding the la-
tency of asynchronous checks ensures all races are eventually reported.

ment mechanisms we identify in Section 2.2, though future
race-recovery-based programming models may require the
stricter guarantees of synchronous checks.

6 Evaluation
We evaluate RADISH’s performance with a Pin-based

simulator [29]. We model a multiprocessor with simple
cores and a realistic memory hierarchy; memory instruc-
tions have variable latency (explained below) and all other
instructions take 1 cycle. We model an 8-core system with
a MESI coherence protocol, 8-way 64KB private L1’s, 8-
way 256KB private L2’s and a 16-way 16MB shared L3
(all with 64B lines). L1, local L2, remote L2, L3 and mem-
ory accesses are 1, 10, 15, 35 and 120 cycles, respectively.
Hardware race checks are 10 cycles, and for software race
checks we simulate the actual instructions performed by the
FastTrack [2] algorithm, which results in variable latency of
at least 100 cycles but potentially much higher depending
on the amount of data accessed and where it is in the mem-
ory hierarchy. Epoch rollovers cost 100,000 cycles. Stack
accesses (as identified by Pin) are assumed to be thread-
local (to approximate an escape analysis), triggering neither
race checks nor metadata lookups. We model the effects of
metadata lines occupying cache space, and all extra mes-
sages and state that RADISH uses. RADISH’s software race
checks have a fixed cost for transitioning to software, plus
a variable cost for the actual check (we simulate the Fast-
Track algorithm [2]). There is no transition cost when sim-
ulating FastTrack alone. Unless noted, all RADISH experi-
ments use the baseline configuration above, compact meta-
data, clock value reference counting, type safety optimiza-
tions, and synchronous software race checks. We evaluate
RADISH on the PARSEC 2.1 benchmarks [30], with sims-
mall inputs and 8 threads. We report results for a subset
of the benchmarks, due to lock-free algorithms for which
race detection is not meaningful (canneal), very large simu-
lator memory usage (facesim, ferret, raytrace, freqmine and
dedup), and our simulator’s lack of support for reader-writer
locks (bodytrack). We report performance as the mean of 5
runs; error bars give 95% confidence intervals. Our exper-
imental data and simulator source code are available from
http://sampa.cs.washington.edu.

We first compare RADISH with a simulated version of
the FastTrack [2] sound and complete software-only race
detector. In all cases, RADISH has several times less over-
head than pure software. Then we examine RADISH’s two
primary, and interrelated, sources of overhead: the increase
in cache pressure due to metadata lines in the cache, and
the need for software race checks when there is insufficient
metadata cached in hardware. We show that two simple
techniques – provisioning extra cores to perform software
checks asynchronously and increasing cache capacity – are
effective optimizations. We show that RADISH’s core race
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Figure 7. Bars show overhead of FastTrack (dark) and syn-
chronous RADISH (light) normalized to FastTrack. Numbers
show overhead with respect to a non-RADISH system.
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Figure 8. The diminishing returns of increasing the number of
cores dedicated to asynchronous checks. The lightest bars
(“0”) are for synchronous RADISH.

detection algorithm consults software rarely, and that type
safety optimizations reduce metadata cache footprint and
eliminate logical clock rollovers.

6.1 Performance
Figure 7 compares the runtime overhead of FastTrack

and synchronous RADISH. Lower is better, and 100%
means running as fast as FastTrack. RADISH substantially
outperforms the FastTrack detector, reducing the overhead
of race detection by 2x (vips) to 37x (blackscholes), while
offering the same sound and complete detection guarantees.
The numbers above each bar show overhead compared to
an equivalent non-RADISH system (i.e. no race detection).
RADISH’s hardware acceleration not only outperforms soft-
ware but brings race detection overheads to an acceptable
level from negligible to 3x. Asynchronous checking (Fig-
ure 8) and larger caches (Figure 9) reduce overheads further:
dedicating two additional cores to asynchronous checking
and leveraging a 32MB L3, RADISH’s overheads range
from negligible to 2x. RADISH’s overheads are low enough
to provide the benefits of always-on, precise race detection
to many applications.

6.2 Sensitivity Analysis
Figure 8 shows the additional performance obtained by

dedicating more cores to processing asynchronous checks.
Results are normalized to a non-RADISH system with eight
cores. The lightest bars show the overhead of having fully
synchronous checking. The darker bars show the perfor-
mance improvement from having 1, 2 or 3 cores dedicated

workload  /  L3 size (MB)blcksch4 8 16 32 64 fluid4 8 16 32 64 strmcl4 8 16 32 64 swaptions4 8 16 32 64 vips4 8 16 32 64 x2644 8 16 32 64
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Figure 9. Performance effects of varying last-level cache (L3)
capacity, from 4MB to 64MB.
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Figure 10. Percentage of memory accesses handled by
RADISH’s various race detection mechanisms.

to asynchronously processing the checks generated by the
eight application cores. Though most workloads do not
benefit from more than one additional core, vips (in experi-
ments not shown) can profitably use up to four extra cores.

Figure 9 shows that the performance of RADISH is
highly dependent on cache capacity. We focus on the last-
level cache since its design is the most amenable to capac-
ity increases. The darkest bars (16M) in Figure 9 show the
performance of our baseline RADISH system with a 16MB
shared L3. Other bars show the performance of smaller
and larger shared L3 caches; line size and associativity, and
L1 and L2 private caches, are unchanged. RADISH is able
to readily harness extra cache capacity for workloads with
larger working sets (fluidanimate, vips and x264). 64MB
L3’s offer little marginal benefit. In other experiments (not
shown), we evaluated RADISH’s performance on caches
of higher associativity and smaller line sizes (but equiva-
lent capacity) than our baseline and found performance un-
changed. Thus, the presence of RADISH metadata in on-
chip caches has a noticeable effect only on capacity misses.
While RADISH does increase an application’s working set,
growing the size of on-chip caches (particularly at the last-
level) is a common and power-efficient way of spending in-
creasing transistor budgets. Increasing last-level cache ca-
pacity is a simple but useful optimization for RADISH.

In Figure 10 we show what percentage of dynamic mem-
ory accesses are handled by each of RADISH’s race detec-
tion mechanisms. Across all benchmarks, a large number of
accesses are ignored because we assume that stack accesses
are race-free (to approximate the information a compiler
could provide about static race-freedom). An even larger
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proportion of accesses are proven race-free by the local per-
missions mechanism. In-hardware status allows accesses to
be checked via explicit hardware race checks. While there
are many fewer accesses that utilize in-hardware status than
the other RADISH mechanisms, software race checks are
so expensive that in-hardware status is still a critical per-
formance optimization. The remaining accesses must be
checked in software, and this frequency is the key determi-
nant of RADISH’s performance.
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Figure 11. Proportion of hardware caches used for various
kinds of data, throughout executions of vips (top) and fluidan-
imate (bottom).

To characterize RADISH’s space overheads, we mea-
sured cache contents (for the entire hierarchy) every 1M cy-
cles and determined how many lines were invalid, or filled
with data, compact metadata or expanded metadata. Fig-
ure 11(a) shows the results for an execution of vips. After
a startup phase, vips utilizes its entire cache capacity, and
most is dedicated to metadata. RADISH’s compact metadata
optimization is effective for many metadata lines, though a
large number of byte arrays filled with pixel data (vips is an
image processing benchmark) require most metadata lines
to be in expanded form. In contrast, in fluidanimate compact
metadata is much more common than expanded (the com-
mon case for our workloads). The steady rise in expanded
metadata at the end of fluidanimate is from writing an output
file as a series of character strings. RADISH adapts to flu-
idanimate’s run-time behavior, using compact metadata for
most of the execution and dynamically allocating expanded
metadata only when necessary.

Finally, Table 2 shows that expensive events are rare
in RADISH. Metadata evictions from the last-level cache,
metadata inflations triggered by a byte access to a com-
pact metadata line, hardware and software race checks, and
epoch rollovers are all rare. The last column quantifies the
effect of RADISH’s metadata cache pollution on L1 cache
misses for regular data accesses. These data show that keep-

workload md md race checks roll- L1D misses
evicts inflates hw sw overs (base/RADISH)

blacksch 0.0 0.0 1.6 0.1 0.0 8.5 / 9.5
fluid 1.2 0.0 2.2 1.4 0.0 10.0 / 15.3

streamcl 0.0 0.0 4.4 0.1 0.0 63.8 / 66.1
swaptions 0.0 0.0 8.6 0.1 0.0 21.6 / 30.1

vips 6.6 0.3 9.5 9.3 0.0 30.3 / 56.3
x264 1.8 0.7 4.7 2.3 0.0 18.4 / 29.7

Table 2. Frequency of important RADISH events, expressed as
occurrences per 1,000 instructions.

ing software race checks infrequent is the key to high per-
formance; the frequency of hardware race checks and degra-
dation of L1 hit rates has much less impact. Also notewor-
thy is that no benchmarks experienced an epoch rollover
during our experiments – our rollover optimizations elimi-
nate this potential source of overhead.

7 Related Work
We now discuss other related work on hardware sup-

port for dynamic race detection; space constraints preclude
a discussion of static race detectors or detectors for other
concurrency errors. Conflict Exceptions [7] and DRFx [8]
are especially related to RADISH. They generate excep-
tions only for races that may violate sequential consistency
in data-race-free models. DRFx uses a hardware buffer of
memory locations accessed between fences and coherence
event monitoring that checks for conflicts with addresses
in the buffer. Conflict Exceptions keeps pre-assigned byte-
level access bits per cache line and sets aside memory space
to keep access bits for out-of-cache data. Both proposals
have large dedicated hardware structures: Conflict Excep-
tions adds 50% cache overhead, and DRFx adds 10KB of
hardware state. The HardBound system [31] also leverages
the idea of storing metadata in the cache data array, to pro-
vide memory safety for C programs. Aikido [32] uses dy-
namic binary rewriting and hardware memory protection to
efficiently detect shared data, accelerating dynamic analy-
ses such as race detection.

Min and Choi [33] developed a limited form of happens-
before race detection using coherence events for programs
with structured parallelism. SigRace [34] uses signatures
to accelerate race checks; it employs a checkpoint/rollback
mechanism to re-execute when a conflict is detected to
prune some false positives. Still, SigRace can report false
races due to signature imprecision and granularity of access
monitoring, as well as missed races due to limited buffer
space for checkpoint/rollback. CORD [35] approximates
happens-before race detection using per-word vector clocks
(fixed metadata) for in-cache data only, leading to both un-
soundness and potential incompleteness. ReEnact [36] uses
thread-level speculation mechanisms to detect races and po-
tentially recover from them via checkpoint/rollback. ReEn-
act can report false races due to word-granularity tracking
and can miss races due to finite hardware resources.
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Eraser [37] proposed lock-set violation detection, an ap-
proximation of happens-before race detection that suffers
from false positives. HARD [38] is a hardware-based im-
plementation of the lock-set algorithm that uses bloom-
filters per cache line to encode which locks should be held
when accessing the corresponding data. While locking-
discipline violation detection is very useful for debugging,
it is imprecise for many acceptable programming idioms.

ECMon [39] proposes exposing cache coherence events
to software as a primitive for several program monitoring
and control techniques. ECMon has a subset of the sup-
port that RADISH offers, as we need hardware for byte-
level metadata tracking and vector-clock comparisons, since
trapping to software for every metadata update and every
vector-clock computation would be prohibitively expensive.

8 Conclusions
Sound and complete race detection is an important

mechanism for detecting bugs, simplifying memory model
semantics, and providing parallel programming safety prop-
erties like atomicity and determinism. Existing software ap-
proaches to race detection have high overheads, and existing
hardware approaches either miss races, report false races, or
both. We propose RADISH, the first hardware-accelerated
race detection algorithm that is sound, complete, and fast
enough for always-on use. Through simulation, we show
that RADISH has no more than 2x overhead compared to
normal execution, and outperforms the leading software-
only race detector by 2x-37x.
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