
Evaluation of a Multithreaded Architecture for Cellular Computing

Călin Caşcaval José G. Castaños Luis Ceze Monty Denneau Manish Gupta
Derek Lieber José E. Moreira Karin Strauss

Henry S. Warren, Jr.
IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598-0218
fcascaval,castanos,lceze,denneau,mgupta,lieber,jmoreira,kstrauss,hankwg@us.ibm.com

Abstract

Cyclops is a new architecture for high performance par-
allel computers being developed at the IBM T. J. Watson
Research Center. The basic cell of this architecture is a
single-chip SMP system with multiple threads of execution,
embedded memory, and integrated communications hard-
ware. Massive intra-chip parallelism is used to tolerate
memory and functional unit latencies. Large systems with
thousands of chips can be built by replicating this basic cell
in a regular pattern. In this paper we describe the Cy-
clops architecture and evaluate two of its new hardware
features: memory hierarchy with flexible cache organiza-
tion and fast barrier hardware. Our experiments with the
STREAM benchmark show that a particular design can
achieve a sustainable memory bandwidth of 40GB/s, equal
to the peak hardware bandwidth and similar to the perfor-
mance of a 128-processor SGI Origin 3800. For small vec-
tors, we have observed in-cache bandwidth above 80 GB/s.
We also show that the fast barrier hardware can improve
the performance of the Splash-2 FFT kernel by up to 10%.
Our results demonstrate that the Cyclops approach of inte-
grating a large number of simple processing elements and
multiple memory banks in the same chip is an effective al-
ternative for designing high performance systems.

1. Introduction

With the continuing trends in processor and memory
evolution, overall system performance is more and more
limited by the performance of the memory subsystem. The
traditional solution to this problem, usually referred to as
the von Neumann bottleneck, is to design ever larger and
deeper memory hierarchies. This results in complex designs
where most of the real estate is devoted to storing and mov-
ing data, instead of actual data processing. Even within the
processing units themselves, significant resources are used

to reduce the impact of memory hierarchy and functional
unit latencies. Approaches like out-of-order execution, mul-
tiple instruction issue, and deep pipelines have been suc-
cessful in the past. However, the average number of ma-
chine cycles to execute an instruction has not improved sig-
nificantly in the past few years. This indicates that we are
reaching a point of diminishing returns as measured by the
increase in performance obtained from additional transis-
tors and power.

This paper describes the Cyclops architecture, a new ap-
proach to effectively use the transistor and power budget of
a piece of silicon. The primary reasoning behind Cyclops
is that computer architecture and organization has become
too complicated and it is time to simplify. The Cyclops ar-
chitecture is founded on three main principles: (i) the inte-
gration of processing logic and memory in the same piece
of silicon; (ii) the use of massive intra-chip parallelism to
tolerate latencies; and (iii) a cellular approach to building
large systems.

The integration of memory and logic in the same chip re-
sults in a simpler memory hierarchy with higher bandwidth
and lower latencies. Although this alleviates the memory
latency problem, access to data still takes multiple machine
cycles. The Cyclops solution is to populate the chip with
a large number of thread units. Each thread unit behaves
like a simple, single-issue, in-order processor. Expensive
resources, like floating-point units and caches, are shared
by groups of threads to ensure high utilization. The thread
units are independent. If a thread stalls on a memory ref-
erence or on the result of an operation, other threads can
continue to make progress. The performance of each indi-
vidual thread is not particularly high, but the aggregate chip
performance is much better than a conventional design with
an equivalent number of transistors. Large, scalable systems
can be built with a cellular approach using the Cyclops chip
as a building block [2]. The chip is viewed as a cell that
can be replicated as many times as necessary, with the cells
interconnected in a regular pattern through communication

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

links provided in each chip.
Cyclops is a research project and the architecture is still

evolving. In this paper we describe one particular configura-
tion that we have evaluated. We shall focus on two features
that we have demonstrated to improve performance substan-
tially: (i) the memory hierarchy, particularly the novel cache
organization, and (ii) the mechanism for fast synchroniza-
tion. The current design point for Cyclops calls for 128
thread execution units. These thread units are organized
in groups of four, called quads. Each quad includes one
floating-point unit, shared by the four thread units in the
quad, and a 16 KB cache unit. Main memory is organized in
16 independent banks of 512 KB each, for a total of 8 MB,
and it is shared by all threads in the chip. We want to em-
phasize that these numbers represent just one of many con-
figurations possible. The total numbers of processing units
and memory modules are mainly driven by silicon area, so
as to maximize floating-point performance. The degrees
of sharing for floating-point and cache units were selected
based on instruction mixes observed in current systems [8].
We continue to study these trade-offs in parallel with the
hardware design [3], to obtain the best performance.

Designing an effective cache organization for a large
SMP like the Cyclops chip is always a challenge. Con-
ventional approaches to cache coherence, such as snooping
and directories, have scalability and cost problems (as mea-
sured in silicon area). Our approach consists of a software-
controlled, non-uniform access, shared cache system. The
threads of execution share the multiple cache units in the
chip, but each thread is more tightly coupled to one partic-
ular unit. Software controls the placement of data in the
cache, allowing high-affinity data (e.g., thread stack) to be
placed in the cache unit closer to a particular thread. We
evaluate the efficacy and efficiency of the Cyclops mem-
ory hierarchy through measurements using the STREAM
benchmark.

Likewise, designing effective synchronization mecha-
nisms for large SMPs is a challenge. Our initial exper-
iments with memory-based synchronization demonstrated
that software barriers for a large number of threads could
be very slow, with a degrading performance on important
benchmarks [4]. These measurements motivated the devel-
opment of dedicated hardware barriers in the chip. We eval-
uate the performance improvements resulting from these
fast barriers through measurements using the FFT kernel
from the Splash-2 benchmark suite.

The rest of this paper is organized as follows. Sec-
tion 2 presents a detailed description of the Cyclops ar-
chitecture. Section 3 describes our simulation environment
and presents performance results for the STREAM [11] and
Splash-2 FFT [22] benchmarks. Section 4 discusses related
work. Finally, Section 5 presents our conclusions and dis-
cusses plans for future work.

2. The Cyclops architecture

The architecture of the Cyclops chip is a hierarchical de-
sign, shown in Figure 1, in which threads share resources
at different levels of the hierarchy. The main idea behind
the design is to integrate in one chip as many concurrent
threads of execution as possible. Instead of hiding laten-
cies, through out-of-order or speculative execution, Cyclops
tolerates latencies through massive parallelism. With this
design each thread unit is simpler and expensive resources,
such as floating-point units and caches, are shared between
different threads.

The architecture itself does not specify the number of
components at each level of the hierarchy. In this section we
describe a possible implementation of the Cyclops architec-
ture with components determined by silicon area constraints
and most common instruction type percentages. We ex-
pect these numbers to change as manufacturing technology
improves. Also, the balance between different resources
might change as a consequence of particular target appli-
cations and as our understanding of the different trade-offs
improves.

In this paper we consider a 32-bit architecture for Cy-
clops. The proprietary instruction set architecture (ISA)
consists of about 60 instruction types, and follows a 3-
operand, load/store RISC design. The decision of using
a new simplified ISA bears on the goal of a simpler de-
sign. For designing the Cyclops ISA we selected the most
widely used instructions in the PowerPC architecture. In-
structions were added to enable multithreaded functional-
ity, such as atomic memory operations and synchronization
instructions.

Quad

Quad

Quad

Quad I−
C

ac
he

I−
C

ac
he Quad

Quad

Quad

Quad I−
C

ac
he

I−
C

ac
he Quad

Quad

Quad

Quad I−
C

ac
he

I−
C

ac
he Quad

Quad

Quad

Quad I−
C

ac
he

I−
C

ac
he

Quad

Quad

Quad

Quad I−
C

ac
he

I−
C

ac
he Quad

Quad

Quad

Quad I−
C

ac
he

I−
C

ac
he Quad

Quad

Quad

Quad I−
C

ac
he

I−
C

ac
he Quad

Quad

Quad

Quad I−
C

ac
he

I−
C

ac
he

A−Switch B−Switch Off−chip Mem

Thread Unit

Thread Unit

Thread Unit

Thread Unit
FP

U
D

−
C

ac
he

DRAM (8x512KB)

DRAM (8x512KB)

Figure 1. Cyclops chip block diagram.

We evaluate a design with the following characteristics:
128 thread units, each unit containing a register file (64 32-

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

bit single precision registers, that can be paired for dou-
ble precision operations), a program counter, a fixed point
ALU, and a sequencer. The thread units are very simple
computing processors that execute instructions in program
order (completion may be out-of-order). Most instructions
execute in one cycle. Each thread can issue an instruction
at every cycle, if resources are available and there are no
dependences with previous instructions. If two threads try
to issue instructions using the same shared resource, one
thread is selected as winner in a round-robin scheme to
prevent starvation. If an instruction cannot be issued, the
thread unit stalls until all resources become available, either
through the completion of previously issued instructions, or
through the release of resources held by other threads.

Groups of four thread units form a quad. The threads in
a quad share a floating-point unit (FPU) and a data cache.
Only the threads within a quad can use that quad’s FPU,
while any thread can access data stored in any of the data
caches. The memory hierarchy has non-uniform access la-
tencies. Thus, threads have faster access to their local data
cache than to a remote cache. The floating-point unit con-
sists of three functional units: an adder, a multiplier, and a
divide and square root unit. Threads can dispatch a floating
point addition and a floating point multiplication at every
cycle. The FPU can complete a floating point multiply-
add (FMA) every cycle. With a clock cycle of 500 MHz,
in :18�m CMOS technology, it achieves a peak perfor-
mance of 1 GFlops per FPU, for a total chip performance
of 32 GFlops.

2.1. Memory hierarchy

A large part of the silicon area in the Cyclops design is
dedicated to memory. This memory is distributed on two
hierarchical levels, main memory and caches for data and
instructions, further described in this section.

Our design uses 16 banks of on-chip memory shared be-
tween all thread units. Each bank is 512 KB of embedded
DRAM, for a total of 8 MB. The banks provide a contigu-
ous address space to the threads. Accesses to the memory
banks go through a memory switch, shown in Figure 2, thus
the latency to any bank is uniform. Addresses are inter-
leaved to provide higher memory bandwidth. The unit of
access is a 32-byte block, and threads accessing two con-
secutive blocks in the same bank will see a lower latency
in burst transfer mode. The physical memory address is
24 bits, giving a maximum addressable memory of 16 MB.
The peak bandwidth of the embedded memory is 42 GB/s
(64 bytes every 12 cycles, 16 memory banks).

Each of the 16 KB data cache (one per quad) has 64-
byte lines and a variable associativity, up to 8-way. The
data caches are shared among quads. That is, a thread in
a quad can access data in other quads’ caches, with lower

Mem

bank 0

Mem

bank 1

Mem

bank 15

Cache

0

Cache

1

Cache

31

TU TU TU

. . .

. . .

Memory switch

Cache switch

b

c

f

g

d
e

a

Figure 2. Cyclops memory hierarchy.

latency than going to memory. All remote caches have the
same access latency, higher than the local cache access la-
tency, since they are accessed through a common switch, as
shown in Figure 2. The peak bandwidth out of the caches is
128 GB/s (8 bytes per cycle, 32 caches).

In the same figure we have marked the paths that a data
item will traverse in different scenarios. For example, if a
thread unit (TU) in quad 31 accesses data present in its local
cache, the data will come through the path marked a. For a
local cache miss, the request will go through path a to the
local cache, will propagate to memory following the path
bg, and come to the thread following gba. A remote cache
request for cache 1 will go through the path de. A remote
cache hit into cache 1 will come through ed, while a remote
cache miss will follow the path fcfed.

The hardware does not implement any cache coherence
mechanism to deal with multiple copies of a memory line
in different caches. However, the architecture supports an
entire spectrum of access schemes, from no coherence at
all to coherent caches shared at different levels. The levels
range from sharing across the entire chip down to sharing
within each quad. Any memory location can be placed in
any cache under software control. The same physical ad-
dress can be mapped to different caches depending on the
logical address. Since a physical address is limited to 24
bits, we use the upper 8 bits of the 32-bit effective address
to encode cache placement information. The encoding, pre-
sented in Table 1, allows a thread to specify in which cache
the data accessed is mapped. We call this interest group
encoding, and it works as follows: the q bits in the first
column in Table 1 specify a number that defines one set of
caches, shown in the second column of the table. If the set
contains more than one member, the hardware will select
one of the caches in the set, utilizing a scrambling function

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

Table 1. Interest group encoding
Encoding Selected Caches Comments

0b000 0 0 0 0 0 thread’s own
0b00q4q3q2q1q01 f0g, f1g, ... f31g exactly one
0b00q3q2q1q01 0 f0,1g, f2,3g, ... f30,31g one of a pair
0b00q2q1q01 0 0 f0,1,2,3g, ... f28,29,30,31g one of four
0b00q1q01 0 0 0 f0, ... 8g, ... f24, ... 31g one of eight
0b00q01 0 0 0 0 f0,1, ... 15g, f16,17, ... 31g one of sixteen
0b001 0 0 0 0 0 f0,1, ... 31g one of all

so that all the caches are uniformly utilized. The function is
completely deterministic and relies only on the address such
that references to the same effective address get mapped to
the same cache.

If all references use the interest group 0b00100000, the
caches behave as a single 512 KB coherent unit shared
across the chip. This is the default used by our system soft-
ware. Each piece of data is mapped only to a single cache.
A drawback of this scheme is that given a uniform distribu-
tion of accesses, only one out of 32 accesses will be in the
local cache. The other non-zero interest groups partition
the caches in different ways, from two units of 256 KB each
to 32 units of 16 KB each. In each of those cases, one ef-
fective address identifies one, and only one, cache location.
Hence, the cache coherence problem does not arise when
using those interest groups. For example, an interest group
of 0b00010001, indicates that the data should be cached in
cache number 8, while an interest group of 0b00010010 in-
dicates either cache 7 or cache 8. When using the interest
group zero (0b00000000), each thread accessing that data
will bring it into its own cache, resulting in a potentially
non-coherent system. The cache selected depends on the
accessing thread. This means that the same memory loca-
tion can be mapped to multiple caches. Without coherence
support in hardware, it is up to user level code to guarantee
that this potential replication is done correctly.

An important use of this flexible cache organization is
to exploit locality and shared read-only data. For example,
data frequently accessed by a thread, such as stack data or
constants, can be cached in the local cache by using the ap-
propriate interest group. The same constant could be cached
in different caches by threads in separate quads by using in-
terest group zero and a physical address that points to the
same memory location.

A data cache can also be partitioned with a granularity
of 2 KB (one set) so that a portion of it can be used as an
addressable fast memory, for streaming data or temporary
work areas. The threads sharing a data cache have to agree
on a certain organization for a particular application. This
feature can potentially result in higher performance for ap-
plications that are coded to use this fast memory directly,
instead of relying on the dynamic, and often hard to con-
trol, cache behavior.

Instruction caches are 32 KB, 8-way set-associative with

64-byte line size. One instruction cache is shared by 2
quads. Unlike the data caches, the instruction caches are
private to the quad pair. In addition, to improve instruction
fetching, each thread has a Prefetch Instruction Buffer (PIB)
that can hold up to 16 instructions.

Some applications require more memory than is avail-
able on the Cyclops chip. To support these applications, the
design includes optional off-chip memory ranging in size
from 128 MB to 2 GB. In the current design the off-chip
memory is not directly addressable. Blocks of data, 1 KB in
size, are transferred between the external memory and the
embedded memory much like disk operations.

2.2. Communication interface

The Cyclops chip provides six input and six output links.
These links allow a chip to be directly connected in a three
dimensional topology (mesh or torus). The links are 16-bit
wide and operate at 500 MHz, giving a maximum I/O band-
width of 12 GB/s. In addition, a seventh link can be used to
connect to a host computer. These links can be used to build
larger systems without additional hardware. However, this
is not focus of this paper.

2.3. Synchronization primitives

An additional feature of the Cyclops chip is the fast in-
terthread hardware barrier, provided through a special pur-
pose register (SPR). It is actually implemented as a wired
OR for all the threads on the chip. Each thread writes its
SPR independently, and it reads the ORed value of all the
threads’ SPRs. The register has 8 bits and we use 2 bits
per barrier, thus providing 4 distinct barriers. One of the
bits holds the state of the current barrier cycle while the
other holds the state of the next barrier cycle. In one cy-
cle, all threads participating in the barrier initially set their
current barrier cycle bit to 1. The threads not participat-
ing in the barrier leave both bits set to 0. When a thread
is ready to enter a barrier, it atomically writes a 0 to the
current bit, thereby removing its contribution to the current
barrier cycle, and a 1 to the next bit, thereby initializing
the next barrier cycle. Each thread then reads back its reg-
ister and spins, waiting for the value of the current bit to
become 0. This will happen when all threads have writ-
ten a 0 to that bit position in their special purpose registers.
Roles are interchanged after each use of the barrier. Be-
cause each thread spin-waits on its own register, there is no
contention for other chip resources and all threads run at
full speed. Performance data for the fast barrier operations
are presented in Section 3.3.

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

3. Experimental results

In this section we describe our simulation environment
for executing Cyclops code and evaluating the performance
of the Cyclops chip. We also report experiments with two
different benchmarks: the STREAM benchmark is used to
assess the sustained memory bandwidth and overall perfor-
mance of the Cyclops chip when executing vector kernels;
the FFT kernel from the Splash-2 benchmark suite measures
the performance impact of Cyclops’ fast barrier mechanism.

3.1. The Cyclops simulation environment

Cyclops executables (kernel, libraries, applications) are
currently being generated with a cross-compiler based on
the GNU toolkit, re-targeted for the Cyclops instruction
set architecture. This cross-compiler supports C, C++, and
FORTRAN 77. An architecturally accurate simulator exe-
cutes instructions from the Cyclops instruction set, model-
ing resource contention between instructions, and thus esti-
mating the number of cycles each instruction executes. The
simulator is parametrized such that different architectural
features can be specified when the program runs.

The performance parameters for the simulated architec-
ture are shown in Table 2. The upper section shows in-
struction latencies, in cycles. The execution column is the
number of cycles the functional unit is busy executing the
instruction. The additional cycles after which the result be-
comes available are shown in the latency column. The lower
section summarizes the hardware parameters used in simu-
lations.

Table 2. Simulation Parameters.

Instruction type Execution Latency
Branches 2 0
Integer multiplication 1 5
Integer divide 33 0
Floating point add, mult. and conv. 1 5
Floating point divide (double prec.) 30 0
Floating point square root (double prec.) 56 0
Floating point multiply-and-add 1 9
Memory operation (local cache hit) 1 6
Memory operation (local cache miss) 1 24
Memory operation (remote cache hit) 1 17
Memory operation (remote cache miss) 1 36
All other operations 1 0

Component # of units Params/unit
Threads 128 single issue, in-order, 500 MHz
FPUs 32 1 add, 1 multiply, 1 divide/square root
D-cache 32 16 KB, up to 8-way assoc., 64-byte lines
I-cache 16 32 KB, 8-way assoc., 32-byte lines
Memory 16 512 KB

Each chip runs a resident system kernel, which exe-
cutes with supervisor privileges. The kernel supports sin-
gle user, single program, multithreaded applications within

each chip. These applications execute in user mode. The
kernel exposes a single-address space shared by all threads.
Due to the small address space and large number of hard-
ware threads available, no resource virtualization is per-
formed in software: virtual addresses map directly to physi-
cal addresses (no paging) and software threads map directly
to hardware threads. The kernel does not support preemp-
tion (except in debugging mode), scheduling or prioritiza-
tion. Every software thread is preallocated with a fixed size
stack per thread (selected at boot time), resulting in fast
thread creation and reuse.

Before going into the detailed analysis of the mem-
ory bandwidth and hardware barriers, we present parallel
speedups obtained on a subset of the Splash-2 benchmarks
(see Figure 3). While not optimized specifically for Cy-
clops, most of these benchmarks reach appropriate levels of
scalability, comparable to those reported in [22].

1 2 4 8 16 32 64 128
1

2

4

8

16

32

64

128

Number of threads

P
ar

al
le

l S
pe

ed
up

Barnes
FFT
FMM
LU
Ocean
Radix

Figure 3. SPLASH2 parallel speedups.

3.2. Experiments with the STREAM Benchmark

The STREAM benchmark [11] is a simple synthetic
benchmark program that measures sustainable memory
bandwidth and the corresponding computation rate for sim-
ple vector kernels. It is intended to characterize the be-
havior of a system for applications that are limited in per-
formance by the memory bandwidth of the system, rather
than by the computational performance of the CPU. The
STREAM benchmark consists of four vector kernels: Copy
(ci = bi), Add (ci = ai+bi), Scale (bi = s�ci), and Triad
(ai = bi + s � ci), which operate on vectors a, b, and c of
double-precision floating point elements. To investigate the
behavior of the memory subsystem, we run the benchmark
for different values of n, the vector length. We report the
measured bandwidth following the STREAM convention:

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

0.5 1 1.5 2 2.5 3

x 10
5

200

220

240

260

280

300

320

340

360

380

400

420
Single−threaded STREAM out−of−the−box

number of elements / thread

ba
nd

w
id

th
 /

th
re

ad
 (

M
B

/s
)

Copy
Add
Scale
Triad

 112 248 400 600 800 1000 1200 1400 1600 2000
200

220

240

260

280

300

320

340

360

380

400

420
Multi−threaded STREAM out−of−the−box (126 threads)

number elements / thread

ba
nd

w
id

th
 /

th
re

ad
 (

M
B

/s
)

Copy
Add
Scale
Triad

(a) (b)

Figure 4. Single- and multi-threaded (126 threads) STREAM out-of-the-box performance

Copy and Scale move 2n 64-bit double words per run,
whereas Add and Triad move 3n double words per run. We
perform ten runs per experiment and report the highest per-
formance result. STREAM specifies that each vector size
should be at least four times the size of the last level cache or
1 million elements, whatever is larger. Unfortunately, since
the main memory of a Cyclops chip is 8 MB we cannot
satisfy the million-element requirement. The largest vector
size we use is 252,000 elements, or approximately 2 MB.
This is four times the size of the combined data caches.

3.2.1. STREAM out-of-the-box. We started by run-
ning the STREAM benchmark directly out-of-the-box as a
single-threaded computation. Results as a function of vec-
tor size are reported in Figure 4(a). This figure shows the
transition between in-cache and out-of-cache modes of op-
eration, as the vector size increases. The transition for Add
and Triad happens for smaller vector sizes since those op-
erations use three vectors. Copy and Scale use two vectors
each. We also run 126 copies of the benchmark as a mul-
tithreaded computation, where each thread performing its
own benchmark independently. Although the total number
of threads in the chip is 128, only 126 could be used for the
benchmark because two of them are reserved for the sys-
tem. Results, in terms of average memory bandwidth sus-
tained by each thread, as a function of vector size per thread
are reported in Figure 4(b). Although the curves are not as
smooth, we can still observe a transition between in-cache
and out-of-cache modes at 200-300 elements per thread.

The thread in the single thread run achieves a higher per-
formance compared to each individual thread from the mul-
tithreaded run, as can be seen in Figure 4. This happens be-
cause in the multithreaded run, the threads are contending

for shared bandwidth. The aggregate bandwidth achieved
by the multithreaded version corresponds to the sum of the
bandwidths observed for all 126 threads. For large vectors,
that bandwidth is from 112 (for Add) to 120 (for Triad)
times larger than for the single-threaded case.

3.2.2. Multithreaded STREAM. We then proceeded to
evaluate the parallel execution of a single STREAM bench-
mark. The code was parallelized by hand using pthreads.
We perform experiments to measure the impact of loop par-
titioning, use of local caches, thread allocation policies,
and code optimization. We also compare multithreaded
STREAM execution in Cyclops to execution on a commer-
cial large-scale shared memory system.

Loop partitioning: Using the Cyclops cache system as
a single 512 KB cache, we studied both block and cyclic
partitioning of loop iterations among the threads. We note
that block and cyclic partitioning of iterations correspond to
block and cyclic access patterns for each thread. To avoid
all threads hitting the same region of memory at the same
time, in the cyclic mode threads were combined in groups of
eight, and each group started execution from a different re-
gion of the iteration space. By combining threads in groups
of eight we allow for reuse of cache lines, which contain
eight double-precision elements.

Results for the blocked and cyclic partitioning are shown
in Figure 5(a) and (b). For the same vector size, the perfor-
mance achieved in blocked mode is better than that achieved
in cyclic mode. In blocked mode, each thread loads one
cache line from main memory to cache and uses the other
seven elements later. In this case, each cache line is used by
only one thread. In cyclic mode, each cache line is accessed

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50
Blocked (126 threads)

number of elements / thread

to
ta

l b
an

dw
id

th
 (

G
B

/s
)

Copy
Add
Scale
Triad

200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50
Cyclic (126 threads)

number of elements / thread

to
ta

l b
an

dw
id

th
 (

G
B

/s
)

Copy
Add
Scale
Triad

(a) Blocked partitioning (b) Cyclic partitioning

200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50
Local (126 threads)

number of elements / thread

to
ta

l b
an

dw
id

th
 (

G
B

/s
)

Copy
Add
Scale
Triad

200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90
Unrolled local (126 threads)

number of elements / thread

to
ta

l b
an

dw
id

th
 (

G
B

/s
)

Copy
Add
Scale
Triad

(c) Blocked partitioning with local caches (d) Unrolled loops with block partitioning and local caches

Figure 5. Memory bandwidth vs. vector size for 126 threads in different modes.

by the eight threads in a group. The threads access the same
cache line at approximately the same time, while the cache
line is still being retrieved from main memory. Because of
that, each thread will have to wait longer to get the data it
needs. Therefore, the average waiting period for the data is
greater in cyclic mode.

Taking advantage of local caches: In the measurements
reported above, data accessed by one thread is always
spread over all quads. As a result, most of the accesses
(on the order of 31

32
) are remote cache references. The ac-

cess time to a local cache is three times faster than the ac-
cess time to a remote cache (6 cycles vs. 17 cycles). To
improve performance, we use the interest group feature of
Cyclops to force all vector elements accessed by a thread to
map into its local cache. False sharing was avoided by mak-

ing the block sizes multiples of cache lines and aligning the
blocks to cache line boundaries. For the same vector size,
performance with vector blocks mapped to the local cache
are better than with distributed caches (Figure 5(c)). For
small vectors we observe improvements of up to 60% in to-
tal bandwidth. Although the improvements are smaller for
large vectors, as performance is limited by the main mem-
ory bandwidth, we still see a 30% improvement for Scale.

Thread allocation policies: By default threads are se-
quentially allocated. That is, threads 0 through 3 are al-
located in quad 0, threads 4 through 7 are allocated in quad
1 and so on. We can also use a balanced thread allocation
policy. With that policy, threads are allocated cyclically on
the quads: threads 0, 32, 64, and 96 in quad 0, threads 1,
33, 65, and 97 in quad 1, and so on. We measured the im-

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

124 8 16 32 48 64 96 112 126
0

10

20

30

40

50

60
Cyclops (249,984 elements)

number of threads

to
ta

l b
an

dw
id

th
 (

G
B

/s
)

Copy
Add
Scale
Triad

20 40 60 80 100 120
0

10

20

30

40

50

60
SGI Origin 3800−400 (5,000,000 elements / processor)

number of processors

to
ta

l b
an

dw
id

th
 (

G
B

/s
)

Copy
Add
Scale
Triad

(a) (b)

Figure 6. Comparing performance of (a) Cyclops with unrolled loops, local caches, balanced thread
allocation policy and block partitioning (vector size is 249,984 elements) vs. that of (b) SGI Origin
3800-400 (vector size is 5,000,000 elements/processor).

pact of the balanced policy when used with the local cache
mode. The balanced policy improves results for local access
mode when less than all threads are used. In general, with
the balanced policy there is less pressure from the threads
to each cache. In the case of Copy, the bandwidth with
the balanced policy can be up to 20% higher than with the
unbalanced policy. When all threads are being used, the al-
location makes no difference because all quads have four
threads active.

Code optimization (unrolling): When the original
STREAM benchmark code is compiled, the resulting in-
struction sequence inside the loops is: load the operands,
execute the operation and store the result. Since there are
dependences between the instructions, a thread has to stall
until its load/store operations are completed. Issuing other
independent instructions while the load or store instructions
execute is desirable. That can be achieved by unrolling the
code. We perform a four-way unrolling of the code by hand,
because the GNU compiler does not handle it satisfactorily.

Figure 5(d) shows that loop unrolling, combined with
blocked partitioning and the use of local caches, improves
the overall performance for small vectors, since other useful
instructions are being issued while the load/store operations
complete. In the case of long vectors, overall performance
is constrained by main memory bandwidth, and unrolling
does not make a difference.

Comparing with a commercial machine: The best
STREAM results for Cyclops, for different numbers of

threads, are compared with the published results for the
SGI Origin 3800/400 in Figure 6. We used a large fixed
vector length for Cyclops, which forces out-of-cache oper-
ation. The published results for the SGI Origin used vector
lengths that were a function of the number of processors.
We note that the vector sizes for the Origin are much larger,
and that Cyclops does not have enough memory to run that
size. Nevertheless, it is remarkable that a single Cyclops
chip can achieve sustainable memory bandwidth similar to
that of a top-of-the-line commercial machine.

3.2.3. Conclusions from the STREAM benchmark tests.
It is clear from the measurements that the best performance
in STREAM for Cyclops is achieved with a combination
of block partitioning of the data, use of local caches, and
code optimization. The balanced thread allocation policy
also improves performance, but only in combination with
a local cache policy and only when not all threads are be-
ing used. Unrolling the code helps to improve performance
because it increases the number of useful instructions be-
tween load/store dependences and thus reduces the number
of stalls by a thread. However, for large problem sizes the
memory bandwidth becomes the real limiting factor and un-
rolling loses its impact.

3.3. Hardware barriers validation

We compared the performance of the hardware barrier
feature of Cyclops against a software implementation, using
the FFT kernel from the Splash-2 [22] benchmark suite. The

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

 2 4 8 16
−40

−30

−20

−10

0

10

20

30

40

Number of threads

R
el

at
iv

e
ex

ec
ut

io
n

tim
es

 (
%

)

total cycles
run cycles
stall cycles

(a) 256-point FFT

 2 4 8 16 32 64
−40

−30

−20

−10

0

10

20

30

40

Number of threads

R
el

at
iv

e
ex

ec
ut

io
n

tim
es

 (
%

)

total cycles
run cycles
stall cycles

(b) 64K-point FFT

Figure 7. Hardware vs. software barriers in SPLASH2 FFT.

software barriers are a tree based scheme: on entering a
barrier a thread first notifies its parent and then spins on a
memory location that is written by the thread’s parent when
all threads have completed the barrier.

Figure 7 shows the performance improvement of the
hardware barriers over the software implemented barriers
for two input data sizes: a 256-point and a 64K-point FFT.
The benchmark requires the number of points per proces-
sor to be greater than or equal to the square root of the to-
tal number of points, and the number of processors to be a
power of two. Because of the first constraint, in the 256-
point version the maximum number of threads is 16. Due
to the second constraint and the fact that some threads in
the Cyclops chip are reserved by the system, the maximum
number of threads in the 64K-point version is 64. In the
figure, we show the relative improvement in performance as
percentage bars. For each benchmark we present three bars:
total number of cycles, run cycles – in which the threads
were busy computing, and stall cycles – in which threads
were stalled for resources. Negative bars represent a reduc-
tion in the number of cycles, and therefore an improvement
in performance. We note that in general the number of run
cycles increases for the hardware barrier implementation,
while the number of stalls decreases significantly. This is
in line with the expectations. The hardware barrier imple-
mentation executes more, cheaper instructions, that do not
contend for shared memory. The performance gain is about
10% for the 256-point FFT with 16 threads, and about 5%
for the 64K-point FFT with 64 threads.

4. Related work

Our design for Cyclops is ambitious, but within the realm
of current or near-future silicon technology. Combined
logic-memory microelectronics processes will soon deliver
chips with hundreds of millions of transistors. Several re-
search groups have advanced processor-in-memory designs
that rely on that technology. We discuss some of the projects
that are related to Cyclops.

The MIT RAW architecture [1, 21] consists of a highly
parallel VLSI design that fully exposes all hardware details
to the compiler. The chip consists of a set of interconnected
tiles, each tile implementing a block of memory, functional
units, and switch for interconnect. The interconnect net-
work has dynamic message routing and a programmable
switch. The RAW architecture does not implement a fixed
instruction set architecture (ISA). Instead, it relies on com-
piler technology to map applications to hardware in a man-
ner that optimizes the allocation of resources.

Architectures that integrate processors and memories on
the same chip are called Processor-In-Memory (PIM) or In-
telligent Memory architectures. They have been spurred by
technological advances that enable the integration of com-
pute logic and memory on a single chip. These architec-
tures deliver higher performance by reducing the latency
and increasing the bandwidth of processor-memory com-
munication. Examples of such architectures are IRAM [14],
Shamrock [10], Imagine [15], FlexRAM [9, 18], DIVA [7],
Active Pages [13], Gilgamesh [23], MAJC [19], and Pi-
ranha [5]. In some cases, the PIM chip is used as a co-

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

processor (Imagine, FlexRAM), while in other cases it is
used as the main engine in the machine (IRAM, Sham-
rock, MAJC, Piranha). Cyclops uses the second approach.
Another difference is that some architectures include many
(32-64), relatively-simple processors on the chip (Imagine,
FlexRAM) and others include only a handful (4-8) of pro-
cessors (IRAM, Shamrock, MAJC, Piranha). Cyclops be-
longs to the first class.

Simultaneous multithreading [6, 20] exploits both
instruction-level and thread-level parallelism by issuing in-
structions from different threads in the same cycle. It was
shown to be a more effective approach to improve resource
utilization than superscalar execution. Their results support
our work by showing that there is not enough instruction-
level parallelism in a single thread of execution, therefore it
is more efficient to execute multiple threads concurrently.

The Tera MTA [16, 17] is another example of a modern
architecture that tolerates latencies through massive paral-
lelism. In the case of Tera, 128 thread contexts share the
execution hardware. This contrasts with Cyclops, in which
each thread has its own execution hardware. The Tera ap-
proach, however, can tolerate longer latencies to memory
and supports the design of a machine without caches.

5. Conclusions

In this paper we have described the Cyclops architecture,
a highly parallel processor-and-memory system on a chip.
The Cyclops chip is intended to be used as a building block
for scalable machines. Cyclops minimizes the impact of
memory and functional unit latencies not through compli-
cated architectural features, but through the use of massive
parallelism. We have measured the performance attained
from two of Cyclops’ distinguishing features: its memory
subsystem organization and its hardware support for fast in-
terthread barriers. We have demonstrated that a single Cy-
clops chip can achieve sustainable memory bandwidth on
the order of 40 GB/s, similar to a top-of-the-line commer-
cial machine. We have also shown that the fast barrier hard-
ware can improve the performance of an FFT kernel by up
to 10%.

As future work, we plan to investigate the performance
of Cyclops in more detail [3]. In particular, we want to
study the impact of its fault tolerance features. Although we
did not discuss this aspect of the Cyclops architecture here,
the chip is expected to function even with broken compo-
nents. For example, if a memory bank fails, the hardware
will set a special register to specify the maximum amount
of memory available on the chip and will re-map all the ad-
dresses so that the address space is contiguous. If thread
units fail, there is enough parallelism in the chip so that
useful work can still be accomplished. If an FPU breaks,
an entire quad will be disabled, but there are 31 other quads

available for computation. From a system perspective, in
which multiple chips are connected together, an application
with knowledge of the machine status can adapt its commu-
nication patterns based on chip availability. We have only
started to explore the system software components neces-
sary to take advantage of these architectural features. It will
be important to characterize the impact of faults on overall
chip and system performance.

Finally, we need to discuss two important limitations of
the Cyclops architecture. First, combined logic and mem-
ory processes have a negative impact: the logic is not as fast
as in a pure logic process and the memory is not as dense as
in a pure memory process. For Cyclops to be successful we
need to demonstrate that the benefits of this single-chip in-
tegration, such as improved memory bandwidth, outweigh
the disadvantages. Second, due to its single-chip nature,
Cyclops is a small-memory system. The external DRAM
is not directly addressable and the bandwidth to it is much
lower. We can expect future generations of Cyclops to in-
clude larger memory, but the current ratio of 250 bytes of
storage to MFlop of compute power (compared to approx-
imately 1MB/1MFlop in conventional machines) will tend
to decrease.

The result is that Cyclops systems are not single purpose
machines such as MD-Grape [12] but are not truly general
purpose computers either. Our architecture targets problems
that exhibit two important characteristics. First, they should
be able to exploit massive amounts of parallelism, on the
order of a million processors in very large systems. Second,
they should be compute intensive. Examples of applications
that match these requirements are molecular dynamics [4],
raytracing, and linear algebra.

Finally, we should stress that the results presented in this
paper were obtained through simulation. Although we are
confident of the general trends demonstrated, the results
need to be validated through real measurements in hard-
ware. As we proceed to complete the design of Cyclops
and build prototypes, we will have the capability to perform
those measurements.

References

[1] A. Agarwal. Raw computation. Scientific American, August
1999.

[2] F. Allen et al. Blue Gene: A vision for protein science using
a petaflop supercomputer. IBM Systems Journal, 40(2):310–
328, 2001.

[3] G. Almasi, C. Caşcaval, J. G. Castaños, M. Denneau,
D. Lieber, J. E. Moreira, and H. S. Warren, Jr. Performance
evaluation of the Cyclops architecture family. Technical Re-
port RC22243, IBM T. J. Watson Research Center, Novem-
ber 2001.

[4] G. S. Almasi, C. Caşcaval, J. G. Castaños, M. Denneau,
W. Donath, M. Eleftheriou, M. Giampapa, H. Ho, D. Lieber,

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

J. E. Moreira, D. Newns, M. Snir, and H. S. Warren, Jr.
Demonstrating the scalability of a molecular dynamics ap-
plication on a Petaflop computer. In Proceedings of the 2001
International Conference on Supercomputing, pages 393–
406, June 2001.

[5] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese.
Piranha: A scalable architecture based on single-chip mul-
tiprocessing. In 27th Annual International Symposium on
Computer Architecture, pages 282–293, June 2000.

[6] S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, and
D. Tullsen. Simultaneous multithreading: A platform for
next-generation processors. IEEE Micro, pages 12–18,
September/October 1997.

[7] M. W. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame,
J. Draper, J. LaCross, J. Brockman, W. Athas, A. Srivasava,
V. Freech, J. Shin, , and J. Park. Mapping irregular applica-
tions to DIVA, a PIM-based data-intensive architecture. In
Proceedings of SC99, November 1999.

[8] J. L. Hennessy and D. A. Patterson. Computer Architecture
A Quantitative Apporach. Morgan Kaufmann, second edi-
tion edition, 1996.

[9] Y. Kang, M. Huang, S.-M. Yoo, Z. Ge, D. Keen, V. Lam,
P. Pattnaik, and J. Torrellas. FlexRAM: Toward an advanced
intelligent memory system. In International Conference on
Computer Design (ICCD), October 1999.

[10] P. Kogge, S. Bass, J. Brockman, D. Chen, and E. Sha. Pur-
suing a petaflop: Point designs for 100 TF computers using
PIM technologies. In Frontiers of Massively Parallel Com-
putation Symposium, 1996.

[11] J. D. McCalpin. Sustainable memory bandwidth
in current high performance computers, 1995.
http://home.austin.rr.com/mccalpin/papers/bandwidth/.

[12] MD Grape project. http://www.research.ibm.com/grape.
[13] M. Oskin, F. T. Chong, and T. Sherwood. Active pages:

A computation model for intelligent memory. In Interna-
tional Symposium on Computer Architecture, pages 192–
203, 1998.

[14] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Kee-
ton, C. Kozyrakis, R. Thomas, and K. Yelick. A case for
intelligent RAM: IRAM. In Proceedings of IEEE Micro,
April 1997.

[15] S. Rixner, W. Dally, U. Kapasi, B. Khailany, A. Lopez-
Lagunas, P. Mattson, and J. Owens. A bandwidth-efficient
architecture for media processing. In 31st International
Symposium on Microarchitecture, November 1998.

[16] A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K. S.
Gatlin, N. Mitchel, J. Feo, and B. Koblenz. Multiprocessor
performance on the Tera MTA. In Proceedings Supercom-
puting ’98, Orlando, Florida, Nov. 7-13 1998.

[17] A. Snavely, G. Johnson, and J. Genetti. Data intensive vol-
ume visualization on the Tera MTA and Cray T3E. In Pro-
ceedings of the High Performance Computing Symposium -
HPC ’99, pages 59–64, 1999.

[18] J. Torrellas, L. Yang, and A.-T. Nguyen. Toward a cost-
effective DSM organization that exploits processor-memory
integration. In Sixth International Symposium on High-
Performance Computer Architecture, January 2000.

[19] M. Tremblay. MAJC: Microprocessor architecture for Java
computing. Presentation at Hot Chips, August 1999.

[20] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In Pro-
ceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 392–403, June 1995.

[21] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee,
V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb,
S. Amarasinghe, and A. Agarwal. Baring it all to software:
Raw machines. IEEE Computer, pages 86–93, September
1997.

[22] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and method-
ological considerations. In International Symposium on
Computer Architecture (ISCA), June 1995.

[23] H. P. Zima and T. Sterling. The Gilgamesh processor-in-
memory architecture and its execution model. In Workshop
on Compilers for Parallel Computers, Edinburgh, Scotland,
UK, June 2001.

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

