
ColorSafe: Architectural Support for Debugging and
Dynamically Avoiding Multi-variable Atomicity Violations

Brandon Lucia† Luis Ceze† Karin Strauss†‡

†University of Washington ‡Microsoft Research
http://sampa.cs.washington.edu http://research.microsoft.com

{blucia0a,luisceze}@cs.washington.edu kstrauss@microsoft.com

ABSTRACT
In this paper, we propose ColorSafe, an architecture that detects
and dynamically avoids single- and multi-variable atomicity vio-
lation bugs. The key idea is to group related data into colors and
then monitor access interleavings in the “color space”. This en-
ables detection of atomicity violations involving any data of the
same color. We leverage support for meta-data to maintain color
information, and signatures to efficiently keep recent color access
histories. ColorSafe dynamically avoids atomicity violations by
inserting ephemeral transactions that prevent erroneous interleav-
ings. ColorSafe has two modes of operation: (1) debugging mode
makes detection more precise, producing fewer false positives and
collecting more information; and, (2) deployment mode provides
robust, efficient dynamic bug avoidance with less precise detection.
This makes ColorSafe useful throughout the lifetime of programs,
not just during development. Our results show that, in deployment
mode, ColorSafe is able to successfully avoid the majority of multi-
variable atomicity violations in bug kernels, as well as in large ap-
plications (Apache and MySQL). In debugging mode, ColorSafe
detects bugs with few false positives.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream Architec-
tures (Multiprocessors); D.1.3 [Programming Techniques]: Con-
current Programming; D.2.5 [Software Engineering]: Testing and
Debugging

General Terms
Design, Reliability, Languages

Keywords
Debugging, Bug Avoidance, Atomicity Violations, Concurrency
Errors, Multi-variable, Data Coloring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’10, June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

1. INTRODUCTION
Concurrency bugs are easy to create but very difficult to fix. In

addition, nondeterminism in multiprocessor systems makes bugs
difficult to reproduce, complicating testing and debugging. Never-
theless, the ubiquity of multicores is adding pressure to write mul-
tithreaded code that takes advantage of the increased parallelism.
This trend has spurred significant interest in concurrency bug de-
tection tools.

Many software-only tools were proposed to detect bugs such as
data-races [22], locking discipline violations [24], and atomicity
violations [11]. However, the overhead these techniques incur is
very high. This motivated the proposal of architectural support for
debugging [11, 14, 15, 19, 30, 33]. Unfortunately, even with so-
phisticated tools and thorough testing [18], hard bugs still make it
to deployment. For this reason, recent research has also proposed
improving the reliability of multithreaded execution with dynamic
concurrency bug avoidance [14, 20, 21] by decreasing the proba-
bility that concurrency bugs will actually manifest in the field.

Most past work on architectural support for concurrency debug-
ging has dealt with bugs involving a single variable, making them
fundamentally limited in helping with a wide variety of defects.
The likely reason is that the complexity (i.e., state required and
number of cases to be considered) of concurrency bug detection
grows very quickly with the number of variables involved. Also,
until not long ago, the belief was that multi-variable bugs were rare.
However, recent work [12, 13] shows that multi-variable concur-
rency bugs are much more common than expected.

What we need, then, are general solutions for both single- and
multi-variable concurrency bugs that use a single set of simple ar-
chitectural mechanisms. Moreover, to justify architecture support,
these mechanisms must be useful for the system’s lifetime, from
development to deployment. This is the gap this paper fills.

Our work focuses on atomicity violations, which are an espe-
cially challenging and pervasive category of concurrency errors.
They occur when programmers overlook the need for atomicity of
a set of memory accesses and fail to enclose them inside the same
critical section. This allows interleavings of remote operations that
lead to wrong behavior. What makes them tricky is that they can
occur even in programs free of data-races. According to a recent
study by Lu et al. [13], atomicity violations account for about 66%
of non-deadlocking concurrency errors. This study also shows that
a significant fraction of atomicity violation errors (33%) involve
multiple variables. However, prior work such as AVIO [11] and
Atom-Aid [14] address only single-variable atomicity violations
or a subset of multi-variable atomicity violations (SVD [30]), and
therefore miss a significant fraction of important concurrency bugs.

In this paper, we make the observation that combining variables

int length; // shared variables
char *str; // protected by lock L

...

lock(L);

tptr = str;

unlock (L);

...

lock(L);

tlen = length;

unlock(L);

Thread 1
...

lock(L);

str = newstr;

unlock(L);

...

lock(L);

length = 15;

unlock(L);

Thread 2

(a)
Single-variable atomicity violation. Concurrent

increments to ctr might lose an update.

int ctr; // shared variable
 // protected by lock L

...

lock(L);

temp = ctr;

unlock (L);

temp++;

lock(L);

ctr = temp;

unlock(L);

Thread 1
...

lock(L);

temp = ctr;

unlock (L);

temp++;

lock(L);

ctr = temp;

unlock(L);

Thread 2

(b)
Multivariable atomicity violation.

Thread 1 reads inconsistent str/length.

Figure 1: Examples of a single-variable (a) and a multi-variable (b) atomicity violation. The example in (b) was distilled
from https://bugzilla.mozilla.org/show_bug.cgi?id=73291.

into sets (or colors) and then performing serializability checks on
colors rather than on individual variables allows us to detect and
avoid single- and multi-variable atomicity violations. We leverage
the insight of assigning colors to variables from data-centric syn-
chronization [4, 26] and combine it with serializability analysis for
bug detection [11, 30] and avoidance techniques [14]. We propose
to combine these techniques in a novel way. By grouping variables
into colors, our detection mechanism can treat a set of variables
as a single unit. Detecting erroneous interleavings of accesses to
same-colored data fundamentally enables us to detect both single-
and multi-variable atomicity violations. The result is ColorSafe.
ColorSafe provides dynamic bug avoidance using ephemeral trans-
actions to prevent unintended interleavings. This is different from
prior work on avoidance [14] because it doesn’t require the archi-
tectural complexity of transactions-all-the-time and avoids a more
general class of bugs.

ColorSafe has two modes of operation: (1) debugging mode col-
lects more information and makes detection more strict to reduce
false positives; and, (2) deployment mode provides robust, efficient
dynamic bug avoidance by making detection less strict but more
proactive in detecting potential bugs. This makes ColorSafe useful
throughout the lifetime of programs, not just for development, and
therefore more compelling to processor manufacturers. Moreover,
the mechanisms used in both modes are almost exactly the same.

In the rest of this paper, Section 2 provides background informa-
tion on atomicity violations and contrasts single- and multi-variable
bug categories. Section 3 describes ColorSafe and provides a high-
level description of how it works. In Section 4, we provide a more
detailed description of ColorSafe and its architectural components.
Section 5 discusses our debugging framework based on ColorSafe.
In Section 6, we present an evaluation of ColorSafe in debugging
and deployment mode. Section 7 discusses related work and Sec-
tion 8 concludes.

2. BACKGROUND: ATOMICITY
VIOLATIONS AND SERIALIZABILITY

Consider the example shown in Figure 1(a). The shared vari-
able ctr is being incremented by two threads simultaneously. The
read and the write of ctr are inside critical sections, so the pro-
gram is data-race free. However, it is still incorrect: the write from
Thread 2 can interleave with the read and write from Thread 1 and
cause a counter increment to be lost. In this example, what is miss-
ing is atomicity [7], since both the read and write of ctr should

have been atomic and isolated1 to avoid unwanted interleaving of
accesses to ctr from other threads. This is an example of a single-
variable atomicity violation, since it only involves accesses to ctr.
Additionally, such an interleaving is said to be unserializable, as
there is no un-interleaved execution of the accesses that results in
the same final state as the interleaved execution. Lu et al. [11] pro-
vide a list of unserializable memory operations to a single variable.

In contrast, consider the example in Figure 1(b), which is a clas-
sic example of a multi-variable atomicity violation. Two shared
variables, str and length, are used to express related properties
of a string. Just after Thread 1 reads the str pointer, Thread 2 up-
dates both variables, causing Thread 1 to read a value of length
inconsistent with the value of str that it read. This could later re-
sult in a crash or, even worse, silent data corruption. Note that,
if accesses to each individual variable are considered separately
(e.g., read and write of str), they do not characterize an atomicity
violation. Conversely, we make the observation that, if str and
length are considered together as a unit, the atomicity violation
is clear: two reads of the unit by Thread 1 are interleaved by writes
to the same unit by Thread 2. Moreover, these accesses are unse-
rializable with respect to the unit, since there are no un-interleaved
executions that would produce the same result as the interleaved
one. To ensure the examples in Figure 1 behave as intended, the
programmer needs to enclose both memory operations inside the
same critical section, instead of each in its own critical section or
in none whatsoever. Vaziri et al. [26] provide a serializability anal-
ysis of accesses involving two variables.

In this work, we employ the idea of detecting unserializable in-
terleavings not only to detect single-variable atomicity violations,
but also to detect and avoid multi-variable atomicity violations,
which are fundamentally harder and more elusive. The next sec-
tion explains how.

3. COLORSAFE: DETECTING AND
AVOIDING MULTI-VARIABLE
ATOMICITY VIOLATIONS

We now explain how grouping variables into colors enables de-
tection of multi-variable atomicity violations. We focus on describ-
ing the conceptual mechanisms ColorSafe uses to detect and dy-
namically avoid atomicity violations. Section 4 describes the actual
architecture extensions and their implementation.

1
In this paper, when we refer to atomicity, we also imply isolation.

3.1 Leveraging Data Coloring
Detecting multi-variable atomicity violations is uniquely chal-

lenging because code may contain no violations of atomicity with
respect to a single variable. Recall the example in Figure 1(b). In
this example, we only see the atomicity violation when we consider
str and length as a single unit of data. This concept of consid-
ering groups of variables together, instead of single variables alone,
is the cornerstone of ColorSafe.

We propose to associate colors with shared variables, giving re-
lated variables the same color. ColorSafe then monitors interleav-
ings of accesses to colors to determine whether they are serializ-
able. This contrasts with past proposals such as AVIO [11] and
Atom-Aid [14], which monitor interleavings of accesses to indi-
vidual addresses. For example, in Figure 1(b), str and length
would be given the same color since they are semantically corre-
lated. In the color space, this example consists of two reads in-
terleaved by at least one remote write to the same color, which is
unserializable.

In Table 1, we discuss each type of multi-variable unserializ-
able interleaving. Note that Cases 1-4 are unserializable from a
single-variable point of view as well. Case 5, however, is only un-
serializable if multiple variables are involved. To understand Case
5, consider the example in Figure 2. The writes from Thread 2
interleaved with the writes from Thread 1, leaving the consistency
between length and str compromised: str may point to ptr2
but lengthwill have value 10. Note that, if str and length are
given the same color, the color access interleaving just described is
not serializable.

Case Interleaving Description

1
R ←W

The interleaving write makes the
R second read see inconsistent data.

2
R ←W The second write writes data based on

W stale or inconsistent data.

3
W ←W

The read gets data from the interleaving
R write which is inconsistent.

4
W ←R The interleaving read gets inconsistent
W data.

5
W ←W The interleaving write leaves the
W data inconsistent (Figure 2).

Table 1: Unserializable access interleavings to colors.

Grouping correlated variables into colors and performing atom-
icity violation detection based on accesses to colors, as opposed to
memory addresses, greatly simplifies the detection of multi-variable
atomicity violations. One can think of it as reducing the high com-
plexity of detecting multi-variable atomicity violations [12, 26] to
the complexity of detecting single-color (or single-variable) atom-
icity violations.

...

lock(L);

str = ptr1;

unlock (L);

...

lock(L);

length = 10;

unlock(L);

int length; // shared
char *str; // variables

Thread 1
...

lock(L);

str = ptr2;

unlock(L);

...

lock(L);

length = 15;

unlock(L);

Thread 2

Figure 2: Example of Case 5 in Table 1. str and length are
left mutually inconsistent.

Coloring Data. Program data structures can be colored either man-
ually or automatically. On one hand, if programmers manually
color data, they encode precise information about the relationships
between the data. Automatic coloring, on the other hand, does not
require programmer effort, but may yield less accurate correlation
information.

The main use of manual coloring is in debugging. Manual col-
oring requires source code annotations, by which the programmer
expresses the semantic relationship between variables. It is rea-
sonable to expect a programmer to manually color data correctly.
During debugging, the programmer is likely starting from a bug re-
port, and can identify which data are involved in a bug from the
symptoms described. Furthermore, grouping related data manually
has been used in past work to simplify the specification of synchro-
nization constraints of data (e.g., atomic sets [26], coloring [4], and
locking discipline [17]). This past work showed that expressing
which data should be grouped is not excessively difficult, since it
requires only reasoning about the data at the point of its declara-
tion. In contrast, correctly implementing synchronization (writing
bug-free code) requires complex global reasoning at every access.

Automatic coloring is primarily useful for bug avoidance. It is
better suited to this task than manual coloring because it doesn’t
require the programmer to anticipate all potential bugs, and color
the involved data. Instead, data are colored according to a heuris-
tic. There are many ways to automatically color data. For example,
we could assign the same color to all fields of a struct, to all
blocks of memory allocated by the same malloc() call, or even
entire object instances if using object-oriented languages. Exhaus-
tively exploring different coloring techniques is beyond the scope
of the paper. We do, however, explore both manual coloring and
automatic coloring to give the reader a flavor of the differences.
We evaluate one automatic coloring technique by giving the same
color to data allocated together (malloc-coloring). Past work has
addressed ways of finding correlations between variables [12], but
it did not thoroughly address atomicity violations. Such work is
complementary to ColorSafe, as we can use its correlations to color
data.

3.2 Detecting Unserializable Color-Access
Interleavings

In this section we explain how ColorSafe detects actual unser-
ializable interleavings in debugging mode. The next section ex-
plains its differences from deployment mode. The atomicity vi-
olation detection mechanism used by ColorSafe consists of three
conceptual components: (1) a history of accesses performed by the
local processor (local history); (2) a history of accesses performed
by remote processors (remote history); and, (3) a set of rules that
determine whether the interleaving of accesses in the history is se-
rializable.

It is important to note that unserializable interleavings are not
necessarily manifestations of atomicity violations. However, for an
atomicity violation to manifest itself, it is necessary that an unser-
ializable interleaving happens. Moreover, unserializable interleav-
ings, especially in a short window, are strong indicators of atom-
icity violation bugs [11, 14]. Hence, we identify likely bugs by
detecting unserializable interleavings.

Since our goal is to detect whether accesses to colors are serializ-
able, ColorSafe’s access histories are kept in terms of colors. This
means the data addresses of memory accesses need to be translated
to colors before being inserted in the history. Local accesses are
inserted into the local history as the local processor performs them.
Remote access histories are built from coherence protocol events;
read and invalidate requests are inserted into the remote history as

...

lock(L);

tptr = str;

unlock (L);

...

lock(L);

tlen = length;

unlock(L);

int length; // shared
char *str; // variables
// both are given color RED

Thread 1
...

lock(L);

str = newstr;

unlock(L);

...

lock(L);

length = 15;

unlock(L);

Thread 2

21

4

3

1

Local
History

Rem.
History

rd RED
wr RED

wr RED

rd RED

2'

4

2

3

3'

Invalidate coherence
event from processor

running Thread 2

rd RED, rd RED interleaved by wr RED
is unserializable (Case 1)

Local
History

Rem.
History

rd RED

rd RED

different sets are compared in
debugging and deployment mode

deployment

debugging

(a) (b) (c)

Thread 1

Figure 3: Overview of how ColorSafe detects multi-variable atomicity violations. The numbers in the dark circles
denote the order of events happening in (a) and (b).

the processor receives those requests. Local and remote histories
are kept separately and ColorSafe retains some information about
the relative order of groups of local and remote accesses.

To detect atomicity violations, ColorSafe determines whether
any unserializable interleaving from Table 1 exists between the lo-
cal and remote histories. Figure 3 shows an example of this process
using the same code from Figure 1(b), which is reproduced in Fig-
ure 3(a), and contains a multi-variable atomicity violation involving
two variables. Variables str and length are both colored RED.
The numbers in the dark circles denote the order of accesses. The
accesses are inserted into their corresponding history as they hap-
pen (Figure 3(b)). Accesses 2 and 3 performed by thread 2 generate
invalidate coherence messages and are inserted as writes into thread
1’s remote history (2’ and 3’). As soon as access 4 is performed,
ColorSafe detects that the accesses in the history are unserializable,
matching Case 1 in Table 1 (two reads interleaved by a write).

One might wonder how long a history we need to capture the
majority of unserializable interleavings that indicate bugs. Recent
work [13, 14] shows that, for many known bugs, this window is
fairly small, on the order of tens of thousands of instructions at
most. This is intuitive because the longer the distance between
operations that should have been atomic, the higher the chance that
the bug manifests itself during testing. Therefore, hard bugs tend
to be the ones that occur in a short window.

3.3 Debugging vs. Deployment Mode
The previous section described what we call debugging mode, as

it detects only interleavings that are actually unserializable. In de-
ployment mode, ColorSafe attempts to dynamically avoid atomicity
violations by (1) detecting when an atomicity violation is likely to
happen, and (2) dynamically starting a special form of transaction
— an ephemeral transaction — to prevent an unserializable inter-
leaving from happening.

In deployment mode, we aim to detect potentially unserializable
interleavings that are related to atomicity violations. The avoid-
ance mechanism can then be triggered before an unserializable in-
terleaving actually happens, to prevent it from happening. We relax
the criterion used to detect unserializable interleavings in debug-
ging mode such that it covers interleavings that could potentially
happen. More precisely, we define a potentially unserializable in-
terleaving as a pair of memory accesses in the local history that, if
interleaved by any access in the remote history, would have been
unserializable according to Table 1. For example, consider the sce-
nario in Figure 3: if the remote writes to RED had happened any-

where in the remote history window, even if they did not actually
interleave with the reads from RED in the local history, this would
be detected as a potentially unserializable interleaving. Figure 3(c)
illustrates the difference between debugging and deployment mode.

The intuition behind this definition of a potentially unserializable
interleaving is that, because ColorSafe observed an unserializable
interleaving that almost happened, it could observe the actual inter-
leaving at a future point in the execution. This could result in an
atomicity violation manifesting itself, which is what ColorSafe is
trying to avoid. It is possible that potentially unserializable inter-
leavings are, in fact, just benign accesses. In this case, the only ef-
fect is that ColorSafe initiates unnecessary bug avoidance actions2.

Once a potentially unserializable interleaving is detected, the
color of the data accessed is inserted into a set called the Hazard-
ColorSet. From then on, all accesses to data whose color is in the
HazardColorSet trigger an ephemeral transaction of a finite size.
The ephemeral transaction will make the short period of the execu-
tion beginning with these accesses appear to execute atomically and
in isolation, effectively preventing any unwanted interleaving with
remote accesses from happening in the meantime. The goal is that
this ephemeral transaction will begin with the first instruction of
an atomicity violation and be long enough to cover all local mem-
ory accesses involved in the violation, consequently preventing its
manifestation.

Ephemeral transactions are transactions dynamically inferred by
ColorSafe and do not correspond to any program annotation. It
is important to point out that the ephemeral transactions inserted
by ColorSafe cannot, in any way, break the semantics of the pro-
gram, since the resulting interleaving of accesses with ephemeral
transactions is still a valid interleaving with respect to the program
semantics. Section 4.4 provides more details.

4. ARCHITECTURAL SUPPORT
ColorSafe needs four basic architectural mechanisms: support

for data coloring (Section 4.1); histories of recent memory accesses,
in terms of colors (Section 4.2); a means of detecting unserializa-
ble interleavings based on the access histories (Section 4.3); and,
for bug avoidance, a way of maintaining the set of colors involved
in unserializable interleavings together with support for ephemeral
transactions (Section 4.4).

2
While this is not a correctness problem and typically not a performance

problem either, the system provides hooks to the programmer to disable
avoidance actions in performance sensitive parts of the code.

4.1 Support for Data Coloring
ColorSafe represents the color of data items as meta-data (mem-

ory tags). There have been several proposals to support memory
tagging for various purposes, such as security and information flow
tracking [6, 32] and as support for new programming models [4].
To support ColorSafe, we chose a design similar to Colorama [4],
which is based on the Mondrian Memory Protection scheme [29].
Mondrian provides an efficient way to associate protection infor-
mation with arbitrary regions of memory by using a hierarchical
multilevel permissions table. ColorSafe uses the same structure but
stores ColorIDs instead of permission information. We call this
table the Multilevel Color Table. Based on the number of colors re-
quired in the applications used in our experiments, we used a 12-bit
ColorID field.

The Multilevel Color Table resides in memory and is accessible
by all processors. Its ranges of addresses are expanded to keep the
ColorID information at the desired granularity (word, line, page,
etc.). The Color Lookaside Buffer (CLB) directly caches coloring
information from the Color Table to provide fast lookup. To look
up an address, the processor checks the CLB. In case of a miss,
the processor fetches the entry from the Multilevel Color Table in
memory. Software can update color information in user-mode by
writing to the Multilevel Color Table. When the color table is writ-
ten, the CLB needs to eventually be updated, but not immediately.
ColorSafe can tolerate this transient color information incoherence,
since this will not affect program semantics in any way.

Note that there are other alternatives to providing support for
data coloring. For example, Loki [32] proposes a multi-granular
tagging mechanism, in which tags can be associated with whole
pages and, only when necessary, expanded to individual words to
provide fine-grain tagging. Such a scheme would also be adequate
for our purposes. Yet another alternative would be to add a Col-
orID field on a per cache line basis. We opted not to do this for
three reasons: (1) we want to allow arbitrary coloring without forc-
ing the user to adjust data layout; (2) the Multilevel Color Table is
more space efficient; and, (3) we did not want to touch sensitive
structures in the memory hierarchy.

4.2 Color Access Histories
In ColorSafe, each processor stores information about the recent

history of color accesses in a history buffer. A history buffer holds
four types of histories: (1) local read, (2) local write, (3) remote
read, and (4) remote write.

ColorSafe keeps tens of thousands of instructions worth of his-
tory. Therefore it needs a resource-efficient way of keeping them,
as we cannot use a searchable FIFO with tens of thousands of items.
We chose to encode the color of accesses in bloom-filter-based sig-
natures [2]. This way, each of the four history types is a signa-
ture file organized as a FIFO queue, in which each signature is a
superset hash-encoding of ColorIDs of memory accesses for an ar-
bitrary number of dynamic instructions. Since only colors, instead
of individual addresses, are recorded into signatures, the amount of
imprecision (aliasing) in the signatures is low. Figure 4(a) shows a
color access signature file.

ColorSafe divides the execution of a program into epochs, ar-
bitrary length sequences of consecutive dynamic instructions (e.g.,
400). A history item is a set of four signatures (one of each his-
tory type) that contains color accesses collected during an epoch.
Figure 4(b) shows a complete history buffer, which is a set of his-
tory items that covers the last n epochs of execution. When an
epoch ends, both local and remote accesses start being encoded in
the next history item. In summary, a history item Hi consists of
a Local Read signature LocRi, a Local Write signature LocWi,

(a)

Color Access
Signature File

...
Total

History
Window

Signature
of referenced

ColorIDs

(b)
History Buffer

LocR0

LocR1

LocRn-2

LocRn-1

...

Read Write
LocW0

LocW1

LocWn-2

LocWn-1

...

Local History

RemR0

RemR1

RemRn-2

RemRn-1

...

Read Write
RemW0

RemW1

RemWn-2

RemWn-1

...

Newest
History

Item
(Hn-1)

Total
History
Window

Remote History

Figure 4: Keeping color access history.

a Remote Read signature RemRi, and a Remote Write signature
RemWi.

Note that ColorSafe sacrifices information about the relative or-
der of operations within a history item. Information about the rel-
ative order across history items is preserved, though. The trade-off
in determining the history item granularity (assuming fixed total
history window) is one of precision versus cost. Smaller history
items (finer-grain) improve precision by preserving more relative
order information and suffer from less signature aliasing. Larger
(coarser-grain) history items use less storage and comparison logic,
since fewer history items are necessary and consequently fewer in-
tersection operations need to be performed.

Collecting Local Access Information. Local access information
can be easily obtained. ColorSafe uses the mechanism described in
Section 4.1 to look up the ColorID for each load and store issued
locally. The resulting ColorID is then encoded in the appropriate
local read and write signatures for the current history item. When
an epoch completes, accesses start being inserted in the next history
item.

Collecting Remote Access Information. Recording remote color
accesses requires minimal additional cache coherence protocol sup-
port. To collect color information for remote accesses, we augment
coherence requests without affecting coherence protocol function-
ality in any way. On a read miss, the processors retrieve the color
information of the data being accessed (actual referenced address,
as opposed to block address) and append it to the coherence request
sent to potential sharers. When a processor receives a read request
from a remote processor, it adds the ColorID in the request to its
current remote read signature. Likewise, an invalidate request gen-
erated by a write miss or a write on shared miss is augmented with
a ColorID. Receiving processors add the ColorID to their current
remote write signature. ColorSafe only needs color information
for accesses that cause inter-processor communication, and so it is
sufficient to piggyback on coherence protocol messages.

4.3 Detecting Unserializable Interleavings
ColorSafe detects unserializable interleavings by intersecting sig-

natures in the history buffer. A signature intersection is a simple
bit-wise AND. For example, suppose we want to detect whether
Case 1 in Table 1 happened in the history buffer. Using the symbols
in Figure 4(b), ColorSafe computes LocRi∩LocRj∩RemWk, for
all i and j, where i �= j, and for values of k that depend on whether
ColorSafe is in debugging mode or deployment mode (Figure 5),
which we discuss shortly. If the resulting signature is not empty,
then it is likely that the execution contains an unserializable inter-
leaving involving the color(s) in the resulting set. Testing for the

LocR0

LocR1

LocRn-2

LocRn-1

...

RemW0

RemW1

RemWn-2

RemWn-1

...

U

(a)
Debugging Mode

i = 1 k = 1..n-1

Most Recent
MemOp a

U

U

U
If not empty

report interleaving
involving a

. . .

LocR0

LocR1

LocRn-2

LocRn-1

...

RemW0

RemW1

RemWn-2

RemWn-1

...

U

U

U

U

U

(b)
Deployment Mode

i = 0, j = 1 k = 0..n-1

Add To
HazardColorSet

. .
.

Figure 5: Detecting unserializable interleavings in (a) debugging mode and (b) deployment mode. In (a), only actual
interleavings are being considered for the serializability test: the current access to a, the local history item i and the
remote history items with k ≥ i. In (b), all items in the remote history are being considered for the serializability test:
local history item i, followed by local history item j, and all possible remote history items (k = 0, ..., n − 1).

remaining cases in Table 1 is analogous, except signatures of the
applicable type are intersected.

Two issues remain: (1) determining when to evaluate the detec-
tion expression and (2) choosing values of k. These choices de-
pend on whether ColorSafe is in debugging mode or in deployment
mode.

Debugging mode. In debugging mode, we want ColorSafe to de-
tect only unserializable interleavings that actually occur. We also
want to know the instruction address of the memory operation that
led to the interleaving. Therefore we choose k such that i ≤ k and
we use a set containing only the most recent memory operation is-
sued locally as the second local set in the intersection (instead of
all possible Hj). This implies that only history items that actually
interleave history item Hi and the most recent memory operation
are considered. Figure 5(a) illustrates this process. If the resulting
set is not empty, then an unserializable interleaving involving the
just-issued memory instruction is reported. This includes both the
instruction address and the type of interleaving (cases in Table 1).
Note that for efficiency, the set of all intersections need not be eval-
uated from scratch at every memory operation, because the partial
intersection between local and remote history items can be reused
until the corresponding history items are pushed out of the history
buffer.

Deployment mode. In deployment mode, we want ColorSafe to
detect potentially unserializable interleavings. Hence, ColorSafe
performs 3-way intersections consisting of all pairs of distinct lo-
cal signatures and each remote signature, regardless of whether the
history items actually interleave (i.e., k = 0...n − 1), shown in
Figure 5(b). When the result set is not empty, it is added to the
HazardColorSet. Also, we do not need to know the instruction that
led to a potential atomicity violation — we need only the colors
to enable dynamic avoidance. This allows us to perform detection
only at the end of an epoch instead of at each memory access, which
significantly decreases the frequency of intersection operations.

4.4 Support for Dynamic Avoidance of Multi-
variable Atomicity Violations

Whenever a potentially unserializable interleaving happens in
deployment mode, ColorSafe adds the color involved to the Haz-
ardColorSet. Each ColorSafe processor has its own HazardCol-
orSet. This set is also encoded as a signature. Insertions are a bit-

wise OR operation between the detection intersections’ results and
the HazardColorSet itself. Upon a memory access, the processor
checks whether the access’s ColorID is in the HazardColorSet. If
so, it starts an ephemeral transaction to prevent a potentially unser-
ializable interleaving. If there is an ephemeral transaction already
in progress, the event is ignored, i.e., transactions do not nest.

Implementing Ephemeral Transactions. From a mechanism per-
spective, ephemeral transactions are just like typical memory trans-
actions [9]. Unlike regular transactions, though, ephemeral trans-
actions are implicit, as they do not rely on code markers. As such,
they do not guarantee that a set of dynamic instructions will al-
ways execute atomically and in isolation. Ephemeral transactions
provide strong atomicity, since they must roll back in the event of
conflicts with any remote accesses and attempt to execute again.
To guarantee forward progress, ColorSafe provides a mechanism
for recognizing repeated rollbacks. ColorSafe then reduces the size
of the ephemeral transaction until it is able to commit or falls back
to non-transactional execution.

4.5 Discussion on Hardware Complexity
Although ColorSafe requires additional hardware support, we ar-

gue that its cost is reasonable and leverages well understood tech-
nology. Mechanisms to keep track of sets of addresses and memory
tagging have been proposed before (e.g., Mondrian Memory Pro-
tection [29] and Loki [32], IBM 801 [5]). Mondrian and Loki use
hierarchical data structures to map memory regions to tags, keep-
ing storage overheads manageable. The buffers and logic required
to handle history items are very simple, since they are based on
address signatures [2, 23]. The additional support in the coher-
ence protocol involves only an extra field in request messages and
does not change any protocol state machine. Finally, support for
transactional memory is being considered for actual off-the-shelf
processors [1].

5. DEBUGGING WITH COLORSAFE
We have developed a debugging methodology for ColorSafe’s

debugging mode. The key idea is to reduce the rate of false-positives
by focusing on detections most likely to indicate bugs.

Invariant-based reduction of false positives. We assume a mode
in which developers run the program multiple times and classify

Type Name Description % Bug Ex. Intlv. Type

Kernel

nsText Mozilla-0.9: During update of string buffer offset and length, inconsistent data can be read. 0.19% WRW
NetIO Mozilla-0.9: Read of flag and conditional write can be interleaved, invalidating data. 0.14% RWW
jsStr Mozilla-0.9: Between update to string buffer and length, inconsistent data can be read by remote read. 0.22% WRW
interp Mozilla-0.8: Between table update and flag update, interleaving can make table inconsistent. 2.8% WWW

msgPane Mozilla-0.8: Interleaving read of flag indicates content loaded in msg. pane before content is loaded. 0.22% WRW

Full
Ap2.0 Apache-2.0.48: Character buffer and string length made inconsistent by concurrent accesses. 0.91% WRW
AGet AGet-0.4: During update of log contents/length, inconsistent data can be read by signal handler. 0.47% WRW

MySQL MySQL-3.23.57: Accesses can be logged out of order by highly concurrent access to replay log. 33.21% WWW

Table 2: Bugs used to evaluate ColorSafe.

each execution as buggy or non-buggy by observing its outcome
(crashes, data corruptions, etc). For each execution, we collect Col-
orSafe’s output and produce a set of detection identifiers, which are
composed of the instruction address where an unserializable inter-
leaving was detected, and the type of interleaving (Table 1). The
detection identifiers from buggy runs are added to the buggyDet-
Set, and those from non-buggy execution are added to nonBuggy-
DetSet. We then set-subtract nonBuggyDetSet from buggyDetSet,
producing the vioSet. This set contains the detection identifiers for
interleavings that occurred only during the buggy runs. These are
the points in the code on which a developer should focus to locate
the bug. In Section 6.4, we show that this simple technique actually
prunes most false positives.

6. EVALUATION
Our goals in evaluating ColorSafe are to assess how well deploy-

ment mode dynamically avoids atomicity violations (Section 6.2)
and at what performance cost (Section 6.2.1), to understand design
trade-offs (Section 6.2.2 and Section 6.2.3), to understand meta-
data usage (Section 6.3), and to assess how accurately debugging
mode locates bugs in the code (Section 6.4).

6.1 Experimental Setup
We developed a ColorSafe simulator using the PIN binary in-

strumentation framework [16]. The simulator models all ColorSafe
structures, including the Multilevel Color Table, translation of data
addresses to colors, the history buffer, unserializable interleaving
detection using signature operations on history items, the Hazard-
ColorSet and ET support. The simulator models both debugging
and deployment mode. In debugging mode, it produces the unseri-
alizable interleaving detection output that is used by our invariant-
based debugging framework. In deployment mode, the simulator
determines how often atomicity violations were avoided by deter-
mining whether the violation executed entirely within an ET. To
assess performance impact, we model ET conflicts.

We use a variety of benchmarks consisting of “bug kernels” and
full applications. Table 2 provides a description of each kernel and
application, along with the portion of the dynamic execution spent
in buggy code (Column 4) and the interleaving pattern that causes
the bug (Column 5). The bug kernels are segments of buggy code
extracted from full applications. We extracted five kernels from
various versions of the Mozilla Project, all previously discussed in
the literature [12, 13]. We paid special attention to maintaining
the original data structure hierarchies and the layout of the code
surrounding the bug. As our full applications workloads, we use the
AGet parallel download accelerator, the Apache httpd webserver
and the MySQL database server. To exercise the buggy regions
of Apache, we used scripts to repeatedly launch 100 concurrent
requests. We exercised the MySQL bug using a version of the sql-
bench benchmark modified to execute many concurrent requests.
The bug in AGet involves a signal handler, so to exercise the buggy

code, we fetched a file from a network resource, and interrupted the
transmission with a Unix signal.

We experiment with both manual coloring and malloc-coloring,
as described in Section 3.1. To perform manual coloring, we added
explicit annotations to the code to associate colors with data. For
malloc-coloring, our simulator monitors calls to memory allocation
functions and assigns a new color to the allocated region.

6.2 Deployment Mode: Bug Avoidance
We start by showing that ColorSafe is able to avoid most in-

stances of atomicity violations in bug kernels and applications. All
experiments had epochs of 400 instructions, a total history window
of 12,000 instructions (i.e., 30 history items), and 3,000-instruction
ETs. Table 3 shows the number of violation instances avoided.

App.
% Avoided

Manual Malloc

nsText 99.95 99.95

NetIO 99.95 99.95

jsStr 100 100

interp 99.95 0

MsgPane 99.95 0

Ap2.0 98.72 94.18

AGet 99.28 0

MySQL † 77.0 71.4

Table 3: Violations avoided in bug kernels and full applications
using manual and malloc data coloring. †We used a different
system configuration for MySQL. We explain the details below
(Difficulties with MySQL).

For bug kernels, ColorSafe avoids nearly 100% of the violation
instances using manual coloring. Malloc-coloring is capable of
avoiding almost all atomicity violations in most kernels, but it is
not effective for all kernels. The bugs in interp and msgPane each
involve accesses to one global variable, and one dynamically allo-
cated variable. They are not allocated together, so using malloc-
coloring does not capture their correlation. As a result ColorSafe is
unable to avoid these bugs.

Table 3 shows that ColorSafe avoids nearly all violation instances
in our full application benchmarks. In runs of Ap2.0, ColorSafe
avoids virtually all instances of the violation, using both manual
and malloc-coloring. Malloc-coloring has a slightly lower rate of
avoidance. This is because ETs triggered by accesses to data unre-
lated to the violation end up preventing useful ETs from proceed-
ing. In runs of AGet, ColorSafe avoids more than 99% of instances
of the violation using manual coloring. The bug in AGet involves
a dynamically allocated variable and a global variable, so unfortu-
nately malloc-coloring is unable to identify their correlation.

Difficulties with MySQL. ColorSafe was unable to avoid viola-
tion instances in MySQL using our standard configuration. This is
because the violation is nearly 20,000 instructions long, and can-
not execute entirely within an ET of 3,000 instructions. We re-ran
MySQL using 64,000-instruction ETs, 1,000-instruction epochs,

and a total history window of 30,000 instructions. With this con-
figuration, ColorSafe avoids 77% of the violations using manual
coloring, and 71.4% of violations using malloc-coloring. Color-
Safe’s avoidance is lower using this configuration because longer
ETs triggered in response to false positive detections prevent use-
ful ETs from beginning over a much longer window.

Could Avoidance Happen by Chance? A Comparison with Ran-
dom Ephemeral Transactions. One may wonder whether the
bug avoidance achieved by ColorSafe would be possible simply by
starting ETs at random points. Here we show empirically that this
is not the case. Consider an experiment using AGet. Using 3,000-
instruction ETs and at random starting about 5 ETs per 100,000
dynamic instructions (the rate of transaction starts for AGet using
standard ColorSafe) avoids 1.8% of all violations. ColorSafe is
able to avoid 99.28% of all violations using the same configuration.
Performing the same experiment with Ap2.0, we see that random
ETs avoid only 6.97% of violations. ColorSafe avoids 98.72% of
violations. Results were similar for other benchmarks. This stark
contrast shows that ColorSafe’s avoidance performs significantly
better than chance.

6.2.1 Overheads
ColorSafe in deployment mode imposes modest impact on per-

formance. We now discuss and quantify the key sources of over-
heads, which are coloring support and ETs. ColorSafe leverages
existing cache coherence support to handle the exchange of color
information between processors. As a result, communicating color
information imposes negligible runtime overhead. The intercon-
nect traffic overhead associated with communicating colorIDs is
not likely to be problematic because the meta-data is small, and
is only communicated between processors on a subset of cache
misses. Color information lookup depends on the meta-data scheme
underlying ColorSafe. While a lookup is not free, the cost is mini-
mized using caches for meta-data information. Moreover, color in-
formation is mostly read-only (i.e., written only at allocation time).
This means that any additional overhead associated with meta-data
writes is unlikely to affect performance. Finally, regarding energy,
the structures used to store color information are similar to TLBs,
and like TLBs, amount to a small fraction of total power consump-
tion.

The main sources of performance degradation are ETs. Namely,
they are bookkeeping overhead and re-execution due to conflicts.
In Table 4, we report the percentage of dynamic instructions that
triggered an ET (% ET Start), the number of ETs that were useful
in preventing an atomicity violation (% Useful ETs), and the per-
centage of useless ETs that experienced a conflict (% Useless Con-
flicts). We report the number of ET starts as a fraction of the total
number of dynamic instructions to quantify how often the overhead
of starting an ET is incurred. The fraction of useful ETs is a mea-
sure of how often the cost of an ET was worthwhile, because it
prevented a violation. The fraction of conflicting useless ETs is an
approximation of the amount of work wasted in ETs that served no
purpose and still had to be re-executed. In Table 4 we also show
the fraction of total dynamic instructions that executed inside ETs
(% in ETs), that executed in useful ETs (% in Useful ETs), and
that executed in useless ETs that had conflicts (% in Useless ETs
w/ Conflicts). We report data only for full applications, as kernels
execute in tight loops around buggy code, making them unsuitable
for this analysis.

There are two important results in these data. First, for all ap-
plications, the rate at which ETs are triggered is very low: 3 ETs
per 100,000 instructions for MySQL, 5 per 100,000 for AGet, and

App.
% ET % in % Useful % in % Useless % in Useless
Start ETs ETs Useful ETs Conflicts ETs w/ Conflicts

Ap2.0 0.02 38.4 7.4 5.8 4.1 3.2

AGet 0.005 12.8 63.8 10.7 6.4 1.1

MySQL 0.003 24.7 9.0 20.2 0.5 1.2

Table 4: The rate of ET starts, % of useful ETs, and % of con-
flicting useless ETs for full applications in deployment mode.
Ap2.0 and MySQL were run using malloc coloring, and AGet,
manual coloring. MySQL was run with the same modified con-
figuration as above (Difficulties with MySQL).

20 per 100,000 for Ap2.0. The low frequency of ET starts indi-
cates that the cost of starting, ending and verifying ETs will have
little effect on performance. We also see a relatively small fraction
(12–38%) of the execution is executed transactionally.

Second, very little computation is wasted by re-executing use-
less ETs. The data show that the fraction of useful ETs ranges from
7.4% (Ap2.0) to 63.8% (AGet). At first glance this may suggest that
useless ETs are frequent, and hence problematic. However, the rate
of aborts for useless ETs is very low — just 0.5% for MySQL, and
at most 6.4% in AGet. The work wasted in these useless, aborted
ETs amounts to just a small fraction of dynamic instructions, from
1.1% to 3.2%. Thus, if an ET is useless, it rarely experiences a
conflict, so very little work is wasted. If an ET is useful, it is more
likely to abort, but we consider it profitable to sacrifice this small
amount of performance in exchange for prevention of buggy be-
havior. Additionally, only a small fraction of the execution (5.8%–
20.2%) executes in useful ETs, and incurs the higher likelihood of
abort.

6.2.2 Sensitivity to Ephemeral Transaction Length
Table 5 shows avoidance for each application as the size of ETs

is varied between 3,000 and 15,000. For all the bugs we considered
— except the very long MySQL bug — ColorSafe’s avoidance is
stable, for the sizes shown, and all sizes within this range. This in-
sensitivity to ET size shows two things: (1) large ETs do not inhibit
the avoidance capability of ColorSafe; and (2) there is flexibility in
the selection of this design parameter. We chose a default ET size of
3,000 instructions; any smaller, and we risk being unable to avoid
modestly large violations; any larger and we increase the chances
of unnecessary abort.

App.
% Violations Avoided

3,000 5,000 10,000 15,000
Inst ET Inst ET Inst ET Inst ET

nsText 99.95 99.95 99.95 99.95

NetIO 99.95 99.95 99.95 99.95

jsStr 100.0 100.0 100.0 100.0

interpm 99.95 99.95 99.95 99.95

msgPanem 99.95 99.90 99.90 99.95

AGetm 99.28 97.93 99.10 99.18

Ap2.0 94.18 90.55 98.64 94.16

Table 5: Stable bug avoidance for a variety of ET sizes. Ap-
plications marked with a m were run using manual coloring,
because their bugs involve global and heap variables; All oth-
ers were run with malloc-coloring.

6.2.3 Sensitivity to History Buffer Configuration
The history buffer configuration determines which interleavings

are observable by ColorSafe and affects which unserializable inter-
leavings can be detected. We now evaluate the effect of varying the
granularity of the history items in the history buffer. We do this

by injecting “noise” into a bug kernel to simulate high-frequency
concurrent access to shared data. We add noise by allocating an
array of random integers unrelated to the bug in the kernel. Ran-
domly, 1% of the elements in the array are given the same color as
the data in the bug. We add five extra threads to the program that
spin in a loop, repeatedly accessing noise data. Each iteration, they
make a random number of accesses between 1 and 10 and deter-
mine whether each is a read or a write by “flipping a coin.” The
noise level parameter is the inverse of the size of the array of noise
data: The higher the noise level, the smaller the array. At higher
noise levels, there is a higher probability that a random access into
the array will access an element colored the same as the data in-
volved in the bug.

Figure 6 shows avoidance in the presence of noise, with a fixed
total instruction history (12,000 instr.) and using both coarse-grain
(1,200 instr.) and fine-grain (400 instr.) history items. These
data show that as the noise level decreases, avoidance improves.
Note though, that avoidance is still effective even at the highest
noise level. We see the improvement because as noise decreases,
the number of ETs triggered by accesses unrelated to the bug de-
creases, permitting useful ETs to proceed (recall ETs don’t nest).

 10 20 30 40 50 60 70 80 90 100
Noise Level

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f V

io
la

tio
ns

 A
vo

id
ed

Fine-Grain History Items
Coarse-Grain History Items

Figure 6: Atomicity violations avoided in kernel NetIO under
synthetic noise for fine- and coarse-grain history items with a
constant history window.

This figure also shows that using fine- rather than coarse-grain
history items improves avoidance. The reason is that fine-grain his-
tory items encode the relative order of memory accesses more pre-
cisely. Using coarse history items, more accesses occur within the
same history item and are considered simultaneous. This prevents
ColorSafe from seeing an interleaving of these accesses. When
fine-grain history items are used, ColorSafe is able to observe these
interleavings, enabling earlier detection of buggy interleavings.

Figure 7 shows the proportion of useful ETs in these experi-
ments. There is an inverse relationship between the noise level
and the fraction of useful ETs. This relationship corroborates our
above conclusion that avoidance is slightly impeded by the pres-
ence of noise because more useless ETs occur. The data also show
that using fine-grain history items results in a larger fraction of use-
ful ETs. This is in agreement with our findings from Figure 6, that
fine-grain history items lead to more precise detection.

6.3 Characterizing Meta-Data Requirements
The size of the color meta-data in ColorSafe is derived from the

total number of necessary colors. In our experiments using malloc-
coloring, we saw as few as 265 colors in Ap2.0, around 900 colors
in MySQL and as many as 4,015 colors (in jsStr). Using manual
coloring, we saw just a single color in most cases (kernels, AGet,
MySQL), and at most 5 colors in Ap2.0. These numbers represent

 10 20 30 40 50 60 70 80 90 100
Noise Level

0

2

4

6

8

10

12

14

P
er

ce
nt

ag
e

of
 U

se
fu

l E
T

s

Fine-Grain History Items
Coarse-Grain History Items

Figure 7: Percentage of useful ETs in NetIO with synthetic
noise, 12,000-instruction total history length, and varied his-
tory item granularities.

the total number of coloring events (e.g., allocations) in the execu-
tion.

We chose to use 12 bits of meta-data to represent colors in Col-
orSafe. For manual coloring, 12 bits provides ample space, accord-
ing to our experimental results. Using malloc-coloring, capacity
will be an issue for applications that frequently allocate memory.
One way of handling this is to recycle colors when their associated
memory is deallocated. Also, at additional cost, ColorSafe could
be implemented with wider meta-data fields.

6.4 Debugging Mode: Locating Bugs in the
Code

We focus on full applications for our debugging experiments.
We collect the report of unserializable interleavings generated by
ColorSafe using both manual coloring and malloc-coloring (when
possible). We present a comparison of the detection capability in
deployment mode versus debugging mode to show the effect of a
stricter detection policy. We quantify the report in terms of code
points — i.e., lines of code to inspect.

Using malloc-coloring in debugging mode, ColorSafe reported
a large number of detection code points — 1,493 for Ap2.0. By
applying invariant-based processing, we saw a marked reduction in
detections to just 58. This much smaller set of detections would
lead a programmer directly to a bug, or short of that, would help a
programmer decide how to manually color data.

We foresee ColorSafe being more useful for debugging if data
structures that are suspected to be related to a bug are manually
colored by a developer. We consider it reasonable to assume a pro-
grammer would be able to do this, given a standard bug report, out-
put from ColorSafe using malloc-coloring, and knowledge about
the data structures in the program. It is realistic to assume that the
programmer can manually color data because it requires only lo-
cal reasoning, when the data is declared (or allocated). Reasoning
of this sort is the basis of prior proposals focusing on data-centric
synchronization models [4, 10, 26].

Table 6 shows the number of code points produced by Color-
Safe using manual coloring. We show results for deployment mode
(Column 2), debugging mode (Column 3) and using our invariant
approach described in Section 5 (Column 4). Most notably, Color-
Safe is able to detect the bug in Ap2.0, with only 2 false positives (3
code points) in deployment mode, and just 1 false positive (2 code
points) in debugging mode. ColorSafe detects the bug in AGet with
just a handful of false positives as well, in both deployment mode,
and debugging mode.

Two other facts stand out amongst these data. First, there is a

decrease in detections from deployment mode to debugging mode.
This is because debugging mode has a stricter policy for determin-
ing that an interleaving is unserializable (Section 3.2). There is
a reduction of approximately 21% (256 code points) in the num-
ber of code points reported for MySQL, and 17% (4 code points)
for AGet. However, further improvement is still desirable — even
necessary — with hundreds of code points left to sift through for
MySQL. This brings us to our second result: The reduction in
reports resulting from applying invariant-based processing is dra-
matic. Invariant-based pruning eliminates hundreds of false posi-
tives for MySQL, leaving 40 code points to be analyzed in a soft-
ware package of over a million lines. For AGet, we reduce the
number of code points reported to just 8.

This shows that ColorSafe debugging, coupled with manual col-
oring and our invariant-based approach, leads to very few false
positives, or virtually none. The reason that the invariant based
approach works so well is that there are many similarities between
non-buggy runs and buggy runs in terms of the unserializable in-
terleavings. These similarities are filtered by our invariant-based
approach, leaving only relevant detections.

App.
Detections

Deployment Debugging Post-Processed

Ap2.0 3 2 2

AGet 24 20 8

MySQL 821 677 40

Table 6: Number of code points reported by ColorSafe using
deployment mode, debugging mode, and debugging mode with
invariant post-processing.

7. RELATED WORK
There are several major differences between ColorSafe and prior

work on architectural support for concurrency bug detection. First,
ColorSafe provides a general solution to support for atomicity vio-
lation detection (single-variable and multi-variable). Second, Col-
orSafe not only detects but also dynamically avoids multi-variable
atomicity violations in the field. Finally, the same set of mecha-
nisms are used for debugging and deployment, making ColorSafe
useful throughout the lifetime of a system.

Atom-Aid [14] leverages the observation that architectures that
execute programs as a continuum of implicit transactions [3, 9, 25,
28] can decrease the amount of interleaving of memory accesses
between threads and potentially avoid atomicity violations. Atom-
Aid detects single-variable atomicity violations and manipulates
the boundaries of implicit transactions to avoid them. ColorSafe
addresses the more general problem of multi-variable atomicity
violations (not detected by Atom-Aid) and does not rely on con-
tinuous implicit transactions, but rather on ephemeral transactions,
which are simpler and less costly. In addition, ColorSafe has dras-
tically fewer false positives.

AVIO [11] was one of the first proposals of architectural support
for atomicity violation detection. AVIO is only useful for debug-
ging. AVIO monitors interleaving by extending the caches, so it is
inherently limited to single-variable atomicity violations. In con-
trast, ColorSafe uses a history buffer of color accesses decoupled
from caches. AVIO uses training runs to extract interleaving invari-
ants and then checks if these invariants hold in future runs. This
was the inspiration for our invariant-based debugging framework.
MUVI [12] proposes static analysis to detect data correlations, but
does not address atomicity violations.

ToleRace [21] and ISOLATOR [20] avoid concurrency errors
that happen when one thread correctly follows a locking discipline

but other threads do not. ToleRace detects such conditions by deter-
mining if the atomicity of a critical section was violated via single-
variable serializability analysis, similarly to AVIO and Atom-Aid.
ISOLATOR detects such scenarios by having the programmer an-
notate the code to declare the locking discipline. The avoidance
mechanism used by these systems is based on keeping shadow
copies of data that are speculatively updated and committed at the
end of critical sections.

Serializability Violation Detector (SVD) [30] heuristically infers
atomic sections based on control and data dependencies. SVD
then detects single-variable atomicity violations and some multi-
variable atomicity violations in these inferred sections. The authors
briefly mention that their technique could use hardware support and
avoid bugs via global checkpoint and restart. ColorSafe detects and
avoids a broader class of bugs because of its more inclusive serializ-
ability analysis and its data correlation information. ColorSafe also
differs from SVD in that it does proactive avoidance, preventing
potential bugs, and without costly global checkpointing.

The Interleaving Constrained Shared Memory MultiProcessor
[31] is a bug avoidance technique based on building invariants dur-
ing testing and then using architecture support to enforce these in-
variants at run time. The invariants are encoded in sets of happens-
before relationships between static memory instructions (PSets).
PSets cannot be used to avoid multi-variable bugs because PSets
do not encode correlation between memory locations (which is the
cornerstone of ColorSafe). PSets requires a training phase to en-
able avoidance, whereas ColorSafe does not. Moreover, it requires
checking whether memory accesses are allowed to proceed, which
the authors claim that can be done with online binary rewriting and
hardware support. Finally, PSets focuses on avoidance, so it is un-
clear whether the false positives would be tolerable for debugging.

Object Race Detection [27] is a software-only technique for dy-
namic race detection that tracks accesses at the level of objects in
Java. While Object Race Detection does not detect violations of
atomicity, it is related to ColorSafe because it tracks whole objects
as units, similarly to ColorSafe’s use of colors. Data coloring in
ColorSafe, however, is more general, as it does not need to follow
object boundaries and is not tied to a specific category of languages.

Colorama [4] is an architecture that supports a programming
model based on data coloring, in which the programmer groups re-
lated data-structures into colors and the system automatically infers
critical sections dynamically. Vaziri [26] et al. proposed a software
implementation of such a model for object oriented languages, in
which programmers group data into atomic sets and a compiler in-
fers critical sections. These two pieces of work are related to Col-
orSafe in that they use data grouping to convey information about
data-consistency, but none of them uses this information for de-
bugging or bug avoidance. More recently and concurrently with
our work, Hammer et al. [8] used atomic sets for serializability vi-
olation detection in Java programs. The required annotations go
beyond grouping objects in atomic sets: it also requires program-
mers to annotate the expected atomicity of some methods (“units of
work”). ColorSafe detects this automatically with high accuracy.

8. CONCLUSIONS
Shared memory parallel programming is a challenge for software

developers. We believe it is extremely important to provide support
for debugging such programs. It is still very likely that bugs will
elude developers, making bug avoidance in the field appealing. We
advocate that mechanisms to support bug detection should also en-
able dynamic bug avoidance post-deployment, making them useful
throughout the lifetime of systems.

We propose ColorSafe, an architecture that provides both pre-

cise detection and dynamic bug avoidance. It is general, covering
both single- and multi-variable atomicity violations and could be
extended to support other forms of bugs. The key idea is to group
correlated variables into colors and then to monitor access inter-
leavings in the color space. This enables detection of bugs involv-
ing a set of variables, not just a single variable.

ColorSafe has two modes of operation: debugging mode pro-
duces detailed information about how and where atomicity viola-
tions may have happened; deployment mode performs less strict
detection, but automatically starts ephemeral transactions to avoid
erroneous interleavings, without affecting the semantics of the pro-
gram. Our results show that ColorSafe in deployment mode is able
to avoid virtually all violations in bug kernels and the vast major-
ity of violations in full applications, such as Apache and MySQL,
and imposes little performance overhead. In addition, ColorSafe
in debugging mode yields very few false positives using a simple
post-processing technique to prune spurious reports.

Acknowledgements
We thank the anonymous reviewers for their helpful feedback. We
thank the SAMPA group at the University of Washington for their
invaluable feedback on the manuscript and insightful discussions.
This work was supported in part by NSF under grants CNS-0720593,
a Microsoft Research Faculty Fellowship, and gifts from Microsoft
Research and Intel.

9. REFERENCES
[1] Advanced Synchronization Facility: Proposed Architectural

Specification. http://developer.amd.com/
assets/45432-ASF_Spec_2.1.pdf, March 2009.

[2] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas. Bulk
Disambiguation of Speculative Threads in Multiprocessors.
In International Symposium on Computer Architecture, 2006.

[3] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC:
Bulk Enforcement of Sequential Consistency. In
International Symposium on Computer Architecture, 2007.

[4] L. Ceze, P. Montesinos, C. von Praun, and J. Torrellas.
Colorama: Architectural Support for Data-Centric
Synchronization. In International Symposium on
High-Performance Computer Architecture, 2007.

[5] A. Chang and M. Mergen. 801 Storage: Architecture and
Programming. ACM Transactions Computer Systems,
February 1988.

[6] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A Flexible
Information Flow Architecture for Software Security. In
International Symposium on Computer Architecture, 2007.

[7] C. Flanagan and S. Qadeer. A Type and Effect System for
Atomicity. In Conference on Programming Language
Design and Implementation, 2003.

[8] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic
Detection of Atomic-Set-Serializability Violations. In
International Conference on Software Engineering, 2008.

[9] L. Hammond, V. Wong, M. Chen, B. Carlstrom, J. Davis,
B. Hertzberg, M. Prabhu, H. Wijaya, C. Kozyrakis, and
K. Olukotun. Transactional Memory Coherence and
Consistency. In International Symposium on Computer
Architecture, 2004.

[10] C. Hoare. Monitors - An Operating System Structuring
Concept. Communications of the ACM, 1974.

[11] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting
Atomicity Violations via Access Interleaving Invariants. In

International Conference on Architectural Support for
Programming Languages and Operating Systems, 2006.

[12] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. Popa, and
Y. Zhou. MUVI: Automatically Inferring Multi-variable
Access Correlations and Detecting Related Semantic and
Concurrency Bugs. In Symposium on Operating System
Principles, 2007.

[13] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
Mistakes-A Comprehensive Study on Real World
Concurrency Bug Characteristics. In International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2008.

[14] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid:
Detecting and Surviving Atomicity Violations. In
International Symposium on Computer Architecture, 2008.

[15] B. Lucia and L. Ceze. Finding Concurrency Bugs With
Context-Aware Communication Graphs. In International
Symposium on Microarchitecture, 2009.

[16] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. Reddi, and K. Hazelwood. PIN: Building
Customized Program Analysis Tools with Dynamic
Instrumentation. In Conference on Programming Language
Design and Implementation, 2005.

[17] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker:
Synchronization Inference for Atomic Sections. In
Symposium on Principles of Programming Languages, 2006.

[18] M. Musuvathi and S. Qadeer. CHESS: Systematic Stress
Testing of Concurrent Software. In International Symposium
on Logic-based Program Synthesis and Transformation,
2006.

[19] M. Prvulovic and J. Torrellas. ReEnact: Using Thread-Level
Speculation Mechanisms to Debug Data Races in
Multithreaded Codes. In International Symposium on
Computer Architecture, 2003.

[20] S. Rajamani, G. Ramalingam, V. Ranganath, and
K. Vaswani. ISOLATOR: Dynamically Ensuring Isolation in
Concurrent Programs. In International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2009.

[21] P. Ratanaworabhan, M. Burtscher, D. Kirovski, B. Zorn,
R. Nagpal, and K. Pattabiraman. Detecting and Tolerating
Asymmetric Races. In Annual Symposium on Principles and
Practice of Parallel Programming, 2009.

[22] M. Ronsee and K. De Bosschere. RecPlay: A Fully
Integrated Practical Record/Replay System. Transactions on
Computer Systems, 1999.

[23] D. Sanchez, L. Yen, M. Hill, and K. Sankaralingam.
Implementing Signatures for Transactional Memory. In
International Symposium on Microarchitecture, 2007.

[24] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A Dynamic Data Race Detector for
Multi-Threaded Programs. Transactions on Computer
Systems, 1997.

[25] E. Vallejo, M. Galluzzi, A. Cristal, F. Vallejo, R. Beivide,
P. Stenstrom, J. Smith, and M. Valero. Implementing
Kilo-Instruction Multiprocessors. In International
Conference on Pervasive Services, 2005.

[26] M. Vaziri, F. Tip, and J. Dolby. Associating Synchronization
Constraints with Data in an Object-Oriented Language. In
Symposium on Principles of Programming Languages, 2006.

[27] C. von Praun and T. Gross. Object Race Detection. In

Conference on Object-Oriented Programming Systems,
Languages and Applications, 2001.

[28] T. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.
Mechanisms for Store-wait-free Multiprocessors. In
International Symposium on Computer Architecture, 2007.

[29] E. Witchel, J. Cates, and K. Asanovic. Mondrian Memory
Protection. In International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2002.

[30] M. Xu, R. Bodik, and M. Hill. A Serializability Violation
Detector for Shared-Memory Server Programs. In
Conference on Programming Language Design and
Implementation, 2005.

[31] J. Yu and S. Narayanasamy. A Case for an Interleaving
Constrained Shared-Memory Multi-Processor. In
International Symposium on Computer Architecture, 2009.

[32] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis.
Hardware Enforcement of Application Security Policies
Using Tagged Memory. In Symposium on Operating Systems
Design and Implementation, 2008.

[33] P. Zhou, R. Teodorescu, and Y. Zhou. HARD:
Hardware-Assisted Lockset-based Race Detection. In
International Symposium on High-Performance Computer
Architecture, 2007.

