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Abstract
We propose a new algorithm for dynamic data-race detec-
tion. Our algorithm reports no false positives and runs on
arbitrary C and C++ code. Unlike previous algorithms, we
do not have to instrument every memory access or track a
full happens-before relation.

Our data-race detector, which we call IFRit, is based on a
run-time abstraction called an interference-free region (IFR).
An IFR is an interval of one thread’s execution during which
any write to a specific variable by a different thread is a data
race. We insert instrumentation at compile time to monitor
active IFRs at run-time. If the runtime observes overlapping
IFRs for conflicting accesses to the same variable in two dif-
ferent threads, it reports a race. The static analysis aggre-
gates information for multiple accesses to the same variable,
avoiding the expense of having to instrument every memory
access in the program.

We directly compare IFRit to FastTrack [10] and Thread-
Sanitizer [25], two state-of-the-art fully-precise data-race
detectors. We show that IFRit imposes a fraction of the
overhead of these detectors. We show that for the PARSEC
benchmarks, and several real-world applications, IFRit finds
many of the races detected by a fully-precise detector. We
also demonstrate that sampling can further reduce IFRit’s
performance overhead without completely forfeiting preci-
sion.
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1. Introduction
1.1 Motivation
Concurrent programming has become the norm, as mul-
tiprocessor computers require programmers to use paral-
lelism to achieve high performance. In addition, many im-
portant application domains (e.g., mobile computing, dis-
tributed sensing) are inherently concurrent. Unfortunately,
concurrent programming is difficult, and concurrent pro-
gramming errors are common.

A data race is a pathological concurrent program behav-
ior that is often the result of a programming error. A data
race occurs when multiple threads access the same mem-
ory location, at least one access is a write, and the accesses
are not ordered by synchronization. Determining the mean-
ing of a program’s execution when a data race has occurred
is deeply problematic. In C and C++, programs that per-
mit data races have undefined semantics [2]—an execution
can literally do anything. Many managed languages like Java
have memory models that provide somewhat stronger guar-
antees about what a program with data races is allowed to
do. Memory models that provide such strong guarantees and
also permit efficient language implementations are complex
and subtle. As a result, data races should almost always be
avoided [2, 26].

Programmers must write programs carefully to ensure
data races are prohibited in all executions. Unfortunately,
code with potential data races is easily overlooked and even
thorough testing may fail to uncover data races that only
rarely affect program behavior. The difficulty of dealing with
data races necessitates tools to detect them.



Over the last fifteen years, many data-race detectors have
been developed, exploring the design space along familiar
axes of static vs. dynamic detection and performance vs.
precision. A typical dynamic data-race detector observes
an execution and reports if data races occur on (just) that
execution. Ideally such a detector would run fast, report all
data races, and not give any false reports, i.e., reported data
races that did not occur. In practice, fully precise data-race
detectors run programs orders of magnitude slower [10, 21]
than uninstrumented execution, so it is typically useful to
sacrifice precision in principled ways while still detecting
many data races.

1.2 Our Approach
This paper describes IFRit, a dynamic data-race detector that
never reports false data races but may miss data races.1 Prior
work with this strategy has relied on sampling: removing in-
strumentation from some memory accesses. Our work can
also leverage sampling, but more fundamentally, it separates
the instrumentation from the memory access and can coa-
lesce the instrumentation for many accesses to the same vari-
able. For example, consider:2

lock(m);

for(int i = 0; i < 1000; i++) {

...

*x = ... ;

...

}

unlock(m);

Assuming the loop contains no synchronization, there is no
reason to instrument each access to x. Instead, to detect
data races on x, it suffices to instrument the region between
the lock and unlock as “writing to x,” which dynamically
requires instrumentation only before and after the loop.

Moreover, we go beyond simple synchronization-free re-
gions by incorporating our recent work on interference-free
regions [7], as explained in more detail in Section 2. Con-
sider this example, where again we assume any code not
shown is known to be synchronization-free:

*x = ...;

while(...) {

*x = ...;

lock(m);

...

unlock(m);

}

*x = ...;

1 Ifrits are spirit-beings from Arabian mythology that, like data races, are
known for being mischievous and elusive.
2 Here, we assume that x is a local variable or register, and the location
pointed to by x is a shared variable. Henceforth when we say “accessing x”
or “writing to x,” we are referring to the location pointed to by x.

Here again it suffices to instrument that x is written to some-
where in this code region, which can be done once before
and once after the loop. It is surprising that doing so cannot
lead to reporting data races that are not true data races, since
the code above does have synchronization. But any concur-
rent access to x would have to race with one of the accesses
to x in the code above.

To place instrumentation in sound places while improving
performance, we use static analysis. For a given variable, we
can conservatively identify interference-free regions, hence-
forth IFRs, which for the purposes of data-race detection are
regions in which any concurrent access to the variable is in-
deed a data race. For the second example above, the key in-
sight is that the IFRs induced by the accesses to x overlap
such that every code point falls in at least one IFR for x.

1.3 Results
Our work is the first to use the notion of IFRs for data-race
detection. We have implemented our technique in the LLVM
compiler framework [14] and used it to detect data races in
mature real-world software. The implementation requires a
novel static analysis for soundly identifying IFRs and a dy-
namic analysis for finding races using the static instrumen-
tation. We directly compare our system with two state-of-
the-art systems and show our performance is considerably
better—orders of magnitude better in several cases. We show
that the races our system detects include nearly all the races
reported by the precise detectors. We show that by combin-
ing our approach with sampling we can reduce our over-
heads enough that our technique could be used in deployed
systems or integrated into a build environment. We also com-
pare our results with published results for other imprecise
data-race detectors. We have developed a formal model of
IFRs for data-race detection and use it prove correctness:
Any data race reported by our approach is a true data race.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the details of the IFR abstraction and ex-
plains our new technique for applying IFRs to data-race de-
tection. Section 3 presents the static analysis used by IFRit
to insert instrumentation calls. Section 4 discusses the run-
time implementation. Section 5 formalizes IFRs and proves
that our technique is sound. Section 6 gives empirical data il-
lustrating IFRit’s low overhead and high precision. Section 7
discusses prior work related to IFRit in more detail, and Sec-
tion 8 concludes and lays out possible future work.

2. Interference-Free Regions
This section introduces interference-free regions and applies
them to dynamic data-race detection.

2.1 Background
An interference-free region, or IFR, is a region of a single
thread’s execution trace surrounding an access to a shared
variable [7]. The region extends from the first acquire action



A: lock(...);
...
unlock(...);
...
unlock(...);
...
r1 = *x;
...
lock(...);
...
lock(...);
...
B: unlock(...);

no acquire 
actions

no release 
actions

synchronization-
free region

interference-
free region

Figure 1. Interference-free region for an access.

prior to the access, to the first release action following the
access, noninclusive. By an acquire action, we mean an ac-
tion that is synchronized with earlier actions in the trace;
for example, a lock acquire is an acquire action because
earlier releases of the lock synchronize with the acquire.
Similarly, a release action synchronizes with later actions
in the trace. These “synchronizes-with” relationships, com-
bined with the ordering on actions of each thread induced by
program order, determine the happens-before order, a par-
tial order over actions in the execution [13]. Other acquire
actions include thread joins and reads of Java volatile vari-
ables or C11 atomic variables. Other release actions include
thread create actions and writes to Java volatile variables or
C11 atomic variables.

Note that IFRs are purely dynamic constructs, and there-
fore, for each memory access in an execution trace, there is
exactly one IFR for that access, and all operations by the
same thread either do or do not fall into the IFR for that ac-
cess.

For example, Figure 1 shows the IFR for an access to
shared variable x. The figure shows only the actions for a
single trace. The IFR extends from the lock at line A to
the unlock at line B. Note that the IFR is always at least
as large as the access’s synchronization-free region, which
extends from the most recent synchronization action to the
next synchronization action. We can characterize the IFR as
the union of three regions: the synchronization-free region
surrounding the access, the “acquire-free” region before the
synchronization-free region, and the “release-free” region
after the synchronization-free region.

We distinguish two types of IFRs: regions surrounding a
read of a shared variable, and regions surrounding a write.
We will call these read IFRs and write IFRs, respectively.

Interference-free regions are so called because while the
thread is executing the interference-free region, no other
thread can write to the shared variable accessed by the IFR’s
access without inducing a data race. A data race is a pair of
accesses to the same variable by different threads, where at
least one access is a write and the accesses are not ordered
by synchronization. Therefore, if an execution has no data

races, the variable (e.g., x in Figure 1) is “interference-free”
for the duration of the execution of the region.

Prior work [7] used IFRs for compiler optimization.
Compilers typically perform optimizations only within syn-
chronization-free regions. Since the compiler may assume
data-race-freedom for C and C++ programs [11, 12], IFRs
extend the scope in which the compiler can reason sequen-
tially about a variable’s value. Our work takes the fundamen-
tal idea of interference-free regions and applies it to another
purpose: dynamic data-race detection.

2.2 IFRs for Data-Race Detection
We say that two IFRs overlap if parts of their executions
happen simultaneously: that is, the first IFR to start must
end before the second IFR begins.3 The novel insight of this
work, then, is this: If the IFRs for two accesses to the same
variable in different threads overlap, and at least one is a
write IFR, then the accesses form a data race.

For example, consider the execution shown in Figure 2.
Two threads access variable x, and one of the accesses is a
write. We have highlighted the corresponding (overlapping)
IFRs for these accesses: a write IFR for the write to x

in Thread 1, and a read IFR for the read of x in Thread
2. The figure shows a number of possible happens-before
edges in the execution. Note that there is no way to trace
a path between the two accesses to x using the happens-
before edges. Therefore, the two accesses are not ordered
by happens-before, and form a data race.

We propose a dynamic data-race detection scheme based
upon this insight about overlapping IFRs:

1. First, a compiler analysis identifies code points that fall
within IFRs for accesses.

2. Based on this analysis, we statically insert calls to our
run-time to start and stop dynamic monitors for different
memory locations.

3. During execution, we report overlapping monitored re-
gions for conflicting, concurrent accesses.

If two IFRs for the same variable do not overlap, the two
accesses may or may not form a data race. Figure 3(a) shows
a case in which the accesses are ordered by synchronization
on a mutex m1. However, it is possible that the IFRs for
two racy accesses will not overlap; in Figure 3(b), the two
threads use different mutexes to protect variable x, but the
critical sections do not happen to overlap, so we will not
catch the race. Such cases represent false negatives in our
detector. Our detector is therefore sound and incomplete: no
false positives, but some false negatives.

Although our algorithm has false negatives, it does have
the nice quality that we might informally call “pseudo-com-
pleteness”: if we run a program with our detector on enough
different executions, we will eventually catch any data race

3 Our implementation inserts instrumentation that serializes the beginnings
and ends of IFRs for the same variable. See Section 4.3 for more details.



lock(...);

unlock(...);

unlock(...);

lock(...);

*x = 5;

lock(...);

unlock(...);

unlock(...);

lock(...);

r1 = *x;

Thread 1

Thread 2

Ti
m

e

IFR #1

IFR #2

Figure 2. Overlapping IFRs for racy accesses in an exe-
cution. The solid blocks indicate interference-free regions.
Dashed lines indicate program order; solid lines indicate
possible happens-before edges between synchronization ac-
tions. The two accesses must form a data race.

unlock(m1);

*x = 5;

lock(m1);

r1 = *x;

Thread 1

Thread 2

(a) These two accesses do not form
a data race, so their IFRs do not
overlap.

unlock(m1);

*x = 5;

lock(m2);

r1 = *x;

Thread 1

Thread 2

(b) These two accesses form a data
race, even though their IFRs do not
overlap.

Figure 3. Non-overlapping IFRs.

in the program. This property follows from a standard the-
orem about happens-before memory models (e.g., Theorem
8.2 in [5]): if an execution of a program has a data race (i.e.,
two conflicting accesses unordered by happens-before), then
there exists a sequentially consistent execution in which the
two accesses execute consecutively.4 If the racing accesses
occur consecutively, their IFRs will overlap, so there exists
an execution of the program for which our algorithm would
catch the race. This distinguishes us from heuristic-based al-
gorithms [24], which only look for certain classes of data
races (e.g., races caused by inconsistent locking).

Because there are typically many variable accesses dur-
ing an execution, and therefore many interference-free re-
gions, we use several techniques to reduce the overhead of
our dynamic detector. First, our static analysis merges the
IFRs for accesses to the same variable whose IFRs over-
lap, allowing us to insert a single instrumentation call for
many actual IFRs in the execution. Second, if IFRs for two
or more variables start and stop at the same point, we handle
all of the variables with a single instrumentation call. Third,

4 An execution is sequentially consistent if all threads see the same global
order of actions, the actions of each thread are in program order, and every
read sees the most recent write to the same location.

we can sample IFRs to reduce the burden on the run-time.
Since any two overlapping IFRs for conflicting, concurrent
accesses represent a data race, sampling does not compro-
mise our soundness guarantee. The detector is usable with-
out sampling, but even limited use of sampling (say, moni-
toring 50% of the time) yields appealingly low performance
overheads (see Section 6).

2.3 Synchronization-Free Regions
A possible variant on this data-race detection scheme would
be to use the same kind of instrumentation, but monitor
for overlapping synchronization-free regions (SFRs) instead
of overlapping interference-free regions. We believe that a
scheme using interference-free regions is superior for two
reasons. First, as shown in Figure 1, the interference-free re-
gion for an access always subsumes the synchronization-free
region for an access, so monitoring interference-free regions
will find more bugs. Second, the larger size of interference-
free regions directly implies a smaller number of instrumen-
tation calls (for example, the detector does not need to stop
monitoring variables at acquire calls), so the performance
overhead of a synchronization-free region detector would
likely be higher.

Prior work on conflict exceptions by several of the authors
of this paper uses synchronization-free regions to imple-
ment a lightweight hardware concurrency exception model
[16]. The model ignores data races in non-overlapping
SFRs, much as IFRit’s algorithm ignores data races in non-
overlapping IFRs. The paper proves formally that exception-
free executions (i.e., executions with no data races in over-
lapping SFRs) are guaranteed to have sequentially consis-
tent behavior. Moreover, SFRs execute atomically in the
absence of exceptions. If IFRit’s static inference of IFRs
were ideal, IFRit too would guarantee sequential consistency
for exception-free executions and atomicity of SFRs, since
IFRs are always strictly larger than SFRs and therefore IFRit
would report strictly more races than the conflict-exceptions
work. Of course, IFRit’s static analysis is necessarily con-
servative, so the SFR surrounding an access may not be
fully covered by the dynamic monitors.5 Therefore IFRit
has weaker guarantees than the conflict-exceptions work.
IFRit’s advantage is that it does not need to instrument every
memory access and it does not require specialized hardware.

3. Static Analysis
This section presents our static analysis to insert instrumen-
tation for the run-time. We start by explaining the types of
instrumentation calls implemented by our analysis (Section
3.1) and giving a simple correctness criterion for the analy-
sis (Section 3.2). Then we present the algorithm in two steps.
First, we describe a simplified algorithm for inserting instru-
mentation calls (Section 3.3). Second, we present the refined
algorithm actually used in our implementation (Section 3.4).

5 For an example of why this might happen, see Section 3.6.



The simplified version is a useful starting point, and the re-
fined algorithm derives directly from the ideas discussed in
Section 3.3. Section 3.5 details the dataflow analysis we use
to implement the algorithm, and Section 3.6 discusses a lim-
itation of our prototype implementation.

Throughout this section we will refer to “variables”; vari-
ables here refer to any memory location at run-time, includ-
ing array elements, global variables, and so on. In our imple-
mentation, variables are SSA names within a compiler pass,
so we are guaranteed that the variable always points to the
same memory location at run-time. Because LLVM automat-
ically converts non-address-taken local variables to registers,
our analysis does not process local variables if their address
is not taken.

3.1 Instrumentation
The static analysis inserts calls to the run-time to start and
stop monitors for different variables.6 A “strong” monitor
for variable x indicates that the thread is currently in an IFR
for a write to x. A “weak” monitor for variable x indicates
that the thread is in an IFR for either a read or write to x.
If monitors for the same variable are active in two different
threads at the same time, and at least one of the monitors is
strong, then there must be overlapping IFRs for conflicting,
concurrent accesses, so the run-time reports a data race.

Initially, we consider a simple instrumentation scheme in
which we start and stop monitors for a single variable via
three instrumentation calls:

start_strong_monitor(void *x);

start_weak_monitor(void *x);

stop_monitor(void *x);

start strong monitor and start weak monitor have
no effect if a monitor of the correct type is already active
for the argument. stop monitor has no effect if no monitor
is active.

For example, a simple critical section could be instru-
mented as follows:

lock(m);

start_strong_monitor(x);

...

*x = ...;

...

stop_monitor(x);

unlock(m);

A downside of using static instrumentation is that the
monitored region may not cover the entire dynamic IFR of
an access; for instance, in Figure 4(a), our analysis does not
insert the instrumentation to start the monitor until after the
if statement.7 On the plus side, since monitors are tied to

6 Our use of the term “monitor” has nothing to do with the synchronization
construct of the same name.
7 Placing a call to start strong monitor before the if statement would
violate the first correctness criterion in Section 3.2.

*x = 5;

A: ...
if (a) {
  lock(m);
}
*x = 5;
if (a) {
  unlock(m);
}
B: ...

Code Execution
(a == false)

monitored 
region

IFR

B: ...

A: ...

(a) Monitored regions may be smaller than the actual IFR,
due to conservatism in the static analysis.

r2 = *x;

r1 = *x;

r1 = *x;
lock(m);
...
unlock(m);
r2 = *x;
lock(m);
...
unlock(m);
r3 = *x;

Code

Execution

r3 = *x;

monitored 
region IFR

unlock(m);

unlock(m);

lock(m);

lock(m);

IFR

IFR

…

…

(b) Monitored regions may combine IFRs for several ac-
cesses to the same variable.

Figure 4. Two examples of IFRs vs. monitors in execution.

variables, not accesses, we can use a single monitor to cover
the IFRs for many accesses to the same variable. In Figure
4(b), the program may read x one or more times, but we only
need to call start weak monitor once.

3.2 Correctness
Ideally, we would insert calls to start strong monitor,
start weak monitor and stop monitor such that a mon-
itor would be active if and only if the corresponding point in
the program’s execution fell in an IFR for an access to the
monitor’s variable. In practice, we cannot statically deter-
mine the boundaries of every IFR, so we monitor a subset of
the possible operations that fall into one or more IFRs in the
execution. Crucially, we must not start a monitor unless an
IFR for an access to the monitor’s variable is active, and we
must stop the monitor if no such IFRs are active. Formally,
we meet the following two correctness conditions:

1. Consider any execution trace from a call to start

strong monitor(x) to stop monitor(x), with no in-
tervening calls to stop monitor(x). Each operation in
the trace must fall within an IFR for a write of x.

2. Consider any execution trace from a call to start weak

monitor(x) to stop monitor(x), with no intervening
calls to stop monitor(x). Each operation in the trace
must fall within an IFR for a read or write of x.



3.3 Simplified Algorithm
This section presents a simple intraprocedural algorithm for
inserting instrumentation calls.

First, for each program point p, we find two sets of vari-
ables:

1. W[p]: the set of variables that must be written on any path
through the current function’s control-flow graph from p
to the next acquire call (or the end of the function).

2. RW[p]: the set of variables that must be read or written
on any path through the current function’s control-flow
graph from p to the next acquire call (or the end of the
function).

At each program point p,W[p] represents the set of vari-
ables for which it is sound to start a strong monitor us-
ing start strong monitor(x). The reason: If the variable
will be written before the next acquire on every path from p,
then all executions of p must be in an IFR for a write to the
variable. Similarly,RW[p] represents the set of variables for
which it is sound to start a weak monitor using start weak

monitor.
Although it is sound to insert start * monitor calls

at any program point, we try to minimize the number of
calls by adding instrumentation in only three places: (1)
after acquire calls; (2) after unknown function calls; and
(3) at the beginning of basic blocks. As long as we insert
all possible start * monitor calls at these three types of
program points, inserting calls anywhere else in the program
is redundant: every other program point is dominated either
by an earlier call in the same basic block, or by the beginning
of the basic block.

When inserting calls to stop monitor, the problem
changes from a must-analysis—which variables must be ac-
cessed after this program point—to a may-analysis: which
monitors may have started before this program point? For
each program point p, we need A[p], the set of variables for
which there exists a path from an access to the variable to p,
with no intervening release calls. IFRs always end at release
calls, so we insert calls to stop monitor just before release
calls, as well as before unknown function calls (since the
call may perform a release) and at the end of each function
(to avoid interprocedural reasoning). At each of these loca-
tions, if we insert a call to stop monitor for every variable
in A[p], we will have satisfied the correctness conditions in
Section 3.2.

However, inserting calls for every variable in A[p] is too
conservative. We must take care not to stop monitors too
early. For example, we should stop the monitor for x in
Figure 5(a) at the end of the IFR for the second access to
x, not the first. Therefore, at release calls, we insert stop
monitor calls only for variables in A[p] − RW[p] (i.e.,
variables for which this program point does not fall in an
IFR). For variables in A[p] ∩W[p] (i.e., variables for which
this program point falls in a write IFR), we do not need to

lock(m1); 
start_strong_monitor(x); 
... 
*x = ...; 
... 
stop_monitor(x); // too early 
unlock(m1); 
... 
*x = ...; 
... 
lock(m2); 
... 
stop_monitor(x); 
unlock(m2);

(a) Stopping a monitor too early.

lock(m1); 
start_strong_monitor(x); 
... 
*x = ...; 
... 
downgrade_monitor(x);
unlock(m1); 
... 
r1 = *x; 
... 
lock(m2); 
... 
stop_monitor(x); 
unlock(m2);

(b) Downgrading a monitor from
strong to weak.

Figure 5. Stopping and downgrading monitors.

insert any instrumentation. For variables inA[p]∩(RW[p]−
W[p]) (i.e., variables for which this program point falls in
an IFR, but not necessarily a write IFR), instead of stopping
the monitor, we “downgrade” it from strong to weak. This
requires a fourth instrumentation function:

downgrade_monitor(void *x);

For example, in Figure 5(b) the strong monitor induced by
the write to x is downgraded at the end of the critical section
for m1.

In summary, we can insert instrumentation calls as fol-
lows to meet the correctness criteria of Section 3.2:

1. At acquire calls, unknown function calls, and the be-
ginning of each basic block, we insert a call to start

strong monitor for each variable x inW[p].

2. At acquire calls, unknown function calls, and the begin-
ning of each basic block, we insert a call to start weak

monitor for each variable x inRW[p]−W[p].

3. At release calls, we insert a call to stop monitor for
variables in A[p]−RW[p].

4. At release calls, we insert a call to downgrade monitor

for variables in A[p] ∩ (RW[p]−W[p]).

5. At unknown function calls and the end of the function, we
insert calls to stop monitor for all variables in A[p].

3.4 Refined Algorithm
In our actual implementation, instead of starting each mon-
itor separately, we merge the start strong monitor and
start weak monitor calls for different variables into a sin-
gle call with a varargs argument:

start_monitors(int num_weak,

int num_strong, ...);

The first num weak arguments to the call after the two
integers are the weak monitors to start (i.e.,RW[p]−W[p]),
and the next num strong arguments are the strong monitors



to start (W[p]). Other than this change, which is useful
because it allows the run-time to start several monitors at
once, the algorithm for starting monitors is basically as
presented in Section 3.3. One difference is that we have a
second helper analysis to identify redundant start moni-

tors calls; many calls are not necessary because they are
dominated by a previous call to start monitors.

In contrast, our approach to stopping monitors differs sig-
nificantly from Section 3.3. Instead of stopping each indi-
vidual monitor separately, we default to stopping all active
monitors, except for a set of monitors which are permitted to
continue through the call.

stop_all_monitors_except(int num_weak,

int num_strong, ...);

The num weak arguments correspond to calls to downgrade
monitor, since only weak monitors for these variables are
permitted to continue through the call. As with start mon-

itors, the sets of variables for which we do not stop strong
and weak monitors are W[p] and RW[p] − W[p], respec-
tively. In other words, we stop all monitors except those
whose variables have active IFRs at that program point.

This inverted interface is an improvement over the sim-
plified algorithm because now we do not need to add in-
strumentation before unknown function calls or at the end
of a function. As long as we instrument every release call
in the program, every monitor will be stopped at the first
release call it encounters dynamically, unless the call is stat-
ically known to fall into an IFR for that variable. This means
our detector has the surprising and useful quality that even
though our compiler analysis is strictly intraprocedural, a dy-
namic monitor can start in one function and end in another.
The other function might be the function’s caller, a callee of
the function, or even another function called long after the
function returns.

This introduces a small soundness issue, since release
calls in uninstrumented libraries, or indirect calls to primi-
tive release functions, will not stop monitors. However, we
have found that programs typically do not rely on synchro-
nization in library code to protect shared data in the main
program, so missing these release calls is a relatively minor
problem. This problem is not fundamental to our algorithm;
it would be possible to dynamically intercept release calls. In
practice, we encountered only one case in our benchmarks
where a program used function pointers for synchronization
calls.

3.5 Data-Flow Analysis
Our compiler analysis is an intraprocedural backwards data-
flow analysis. Working from the end of each function to the
beginning, we identify variables that must be accessed on
every path from a given program point to the next acquire
call: W and RW . (The refined analysis does not use A.)
The initial values (at the end of the function) areW[pend] =
RW[pend] = {}. The sets propagate through statements as

Statement Statement
type form W[p] RW[p]

Load p : r = ∗x; W[p′] RW[p′] ∪ {x}
Store p : ∗x = r; W[p′] ∪ {x} RW[p′] ∪ {x}

Acquire p : lock(m); {} {}
Release p : unlock(m); W[p′] RW[p′]

Call p : f(...); {} {}
Other p : . . . ; W[p′] RW[p′]

Figure 6. Summary of our backwards data-flow analysis to
insert instrumentation calls. p′ is the program point after the
statement at point p.

shown in Figure 6. At load and store operations we update
theW and RW sets. The sets get killed at acquire calls and
unknown function calls. At control-flow merge points, we
take the intersection of the incoming sets. We implemented
this analysis in the LLVM compiler framework [14].

3.6 Short-Scope Monitors
In the previous section, we discussed inserting calls to
start monitors at the beginning of basic blocks or af-
ter unknown function calls. However, in some cases, instru-
menting at these locations is not possible, because one or
more variables for which a monitor is being started are not
in scope. For example, consider the following loop:

int array[10]; // global variable

...

int i = 0;

int *x;

do {

x = &array[i];

*x = i;

i++;

} while (i < 10);

Without analyzing the compiled version of this program,
we can infer that there will be at least 10 different IFRs per
execution: one for each value of x. Therefore that we cannot
simply insert a single start monitors call for x before the
loop. When translated to SSA form, x’s definition is inside
the loop:

int *array; // global variable

entry:

array = ...;

goto loop;

loop:

int i_1 = PHI [0, entry] [i_2, loop];

int *x = array + i_1;

store i_1 into x;

int i_2 = i_1 + 1;



if (i_2 < 10) goto loop else goto done;

done:

return;

Our analysis will discover that the monitor for x should
start at the beginning of the entry block; however, x is not
in scope at the beginning of the entry block. Practically, the
earliest we can start the monitor for x is after x is initialized:

...

int *x = array + i_2;

start_strong_monitor(x);

store i_2 into x;

...

Placing the call within the body of the loop has the effect
of starting an IFR for each element in the array, which is
what we expected from examining the source code.

Our instrumentation pass therefore works as follows: for
every monitor start whose variable is not in scope, we insert
a special call (either to start weak monitor or to start

strong monitor) that starts a single monitor right after
the variable’s definition. We call such monitors short-scope
monitors, because the scope of the variable being monitored
limits the duration of the monitor. We have found that there
tend to be many short-scope monitor starts in program exe-
cutions, since typically such calls cover exactly one memory
load or store. Since handling all of these calls can be very
expensive, our dynamic analysis can start monitors for only
a subset of these calls in order to recover performance; this
will be discussed in more detail in Section 4.4.

4. Dynamic Analysis
There are two parts to IFRit’s dynamic analysis. First, IFRit
tracks which threads have active monitors for which memory
locations. Second, IFRit detects races by identifying con-
flicting monitors for the same location in different threads.

4.1 Dynamic Monitors
The static analysis informs the dynamic analysis of program
points where monitors should start and stop. At run-time,
IFRit maintains a data structure called the Active Monitors
Table (AMT). The AMT maps each memory location to
a set of monitor records for that location. There is one
monitor record for each thread executing a monitor for a
particular memory location. A monitor record stores the
program counter where the monitor began, the thread ID of
the thread executing the monitor, and whether the monitor
is weak or strong. Each thread also maintains two thread-
local sets of memory locations representing active weak and
strong monitors.

Following the key insight of the FastTrack algorithm [10],
the AMT holds at most one strong monitor per memory
location at a time. In the data-race-free case, there is no need
to store more than one monitor, since writes to a memory
location are totally ordered. If more than one thread starts a

strong monitor for a given location concurrently, the tool will
report a data race. This optimization might result in fewer
data-race detections, but only for executions where at least
one data race is reported.

When a thread reaches a call to start monitors, it
looks up each argument in the AMT, adds a monitor record
to the table’s entry for each argument (unless one is already
active), and updates its local sets. When a thread encounters
a call to stop all monitors except, it iterates through
its local sets, removing monitor records from the AMT for
all memory locations in the local sets except those listed as
arguments.

4.2 Detecting Data Races
IFRit detects data races using the information stored in the
AMT. When a thread reaches a call to start monitors,
it performs a race check on every memory location passed
to start monitors (except those for which monitors are
already active) before updating the AMT. To perform the
race check, the thread looks at the set of monitor records
associated with each memory location.

If the thread performing the race check is starting a strong
monitor, and another thread already has an active monitor
(weak or strong) for the location, IFRit concludes there is
a data race. If the thread performing the check is starting a
weak monitor, IFRit concludes there is a data race only if
another thread has an active strong monitor for that location.

When a thread detects a data race, it reports its current
program counter, and the program counter stored in the
monitor record that the thread found in the AMT.

4.3 Implementation
We implemented IFRit’s dynamic analysis from scratch in a
run-time library. The library’s API exposes the start mon-

itors, start strong monitor, start weak monitor

and stop all monitors except functions. The runtime
implements the AMT as two arrays of 2n hash tables, where
n is a small positive integer—that is, 2n pairs of hash tables,
where each pair includes one hash table for strong moni-
tor records and one hash table for weak monitor records.8

Monitor records are assigned to the appropriate hash table in
the array by masking off n bits in the monitor’s associated
memory location. We found that partitioning the AMT in
this way was extremely valuable for regaining parallelism,
as compared to earlier designs in our development process
that used just two hash tables for all monitor records.

Each pair of hash tables in the AMT is synchronized
using a mutex lock. In addition to preventing the hash tables
from being corrupted by concurrent accesses, this simple
synchronization scheme also has the effect of serializing
monitor starts for each location.

The threads’ sets of monitors are implemented as two
thread-local hash tables, one for active strong monitors and

8 The results presented in Section 6 use n = 5.



one for active weak monitors. Because this information is
stored locally, many calls to the runtime do not need to do
any synchronization—they simply check to see whether the
monitor is already active (in the case of start monitors

or its variants) or whether there are any active monitors that
need to be stopped (in the case of stop all monitors ex-

cept).

4.4 Performance Considerations
IFRit has a strong correctness guarantee: even if not all
monitors are started, we will report no false positives, as long
as monitors are stopped at the appropriate time (or earlier).
Therefore, we can ignore some calls to start monitors

without compromising soundness. We leverage this in two
ways: limiting short-scope monitors, and sampling.

First, as discussed in Section 3.6, so-called “short-scope
monitors” are numerous enough to be a burden on the run-
time. A common case is that a thread will be iterating
through a large array, which requires starting a new mon-
itor on every iteration. The idea of our static instrumenta-
tion is to use a few calls to represent many accesses, so
these small-scope calls are problematic. Therefore we have
an optional mode for our detector that starts only a subset
of these monitors. Specifically, we allow a maximum of k
dynamic monitors per static call site. This optimization is
intended to exploit the observation that if one iteration of
the loop is racy, it is likely that the rest will be racy as well.
We have found that this optimization provides considerably
better performance while catching almost as many races as
the fully-monitored mode. We did find one race which was
missed by this optimization: a loop in one of the PARSEC
benchmarks (streamcluster) was not racy for its first 512
iterations, but was racy for the rest.

Second, we implemented sampling. Our runtime executes
a sampling period for a window of execution every second.
During a sampling period, the runtime executes all calls to
start monitors and its variants. For instance, with a sam-
pling rate of 1%, IFRit monitors the execution for one one-
hundredth of a second every second. When the period ends,
we ignore calls to start monitors and its variants. We
chose this sampling technique because we suspect monitor-
ing many memory locations simultaneously finds more bugs
than sparsely sampling monitors at all times. Sampling is ef-
fective: at a sampling rate of 50%, overheads went down by
an order of magnitude.

We also implemented an optimization for programs that
have long single-threaded phases: if there is only one thread
running, we ignore calls to start monitors. This affects
neither soundness nor completeness: once the thread finishes
its work, it must call pthread create to start a new thread.
pthread create is a release operation. Therefore any mon-
itors collected during the single-threaded phase would be

unlock(m1);

*x = 5;
lock(m1);

r1 = *x;

Thread 1

Thread 2

Figure 7. Even though neither access happens during the
other access’s IFR, we can detect the race in this case be-
cause the accesses’ IFRs overlap.

stopped before the pthread create call anyway, so there
is no point to starting these monitors.9

5. Formalism and Correctness
This section proves that the central idea of our detector
is correct: if two interference-free regions for conflicting,
concurrent accesses overlap, then the accesses must form a
data race. The proof is based on a proof in prior work, which
showed that other threads could not write to a variable during
an IFR for that variable without inducing a data race [7].
The property we prove here is stronger, because the racing
access may not happen during the other access’s IFR (see
Figure 7 for an example). We use similar notation to prior
work to improve clarity. To simplify the presentation, we use
a version of the C++11/C11 memory model that has been
abstracted and simplified in unessential ways [11, 12].

An execution of a program is a quadruple (A,≤sb, <sw,
≤hb). A is a set of actions, where each action a is a triple of
a thread ID t, a kind of action k, and a unique ID u: a = (t,
k, u). We do not specify which kinds of actions are used
in the execution, but we assume there are reads and writes
of variables, as well as some form of synchronization. The
sequenced-before relation≤sb totally orders unique IDs with
the same thread ID. The synchronizes-with relation <sw is a
strict partial order over unique IDs, which orders synchro-
nization actions: u1 <sw u2 implies that u1 is the UID for
a release action, and u2 is the UID for an acquire action.
The happens-before relation ≤hb is the reflexive transitive
closure of the union of ≤sb and <sw: ≤hb= (≤sb ∪ <sw)

∗.
Our goal is to prove that two overlapping IFRs for con-

flicting, concurrent accesses to the same variable always im-

9 The pthread create call might allow some monitors to continue
through it, but we do not think this is a concern. Ignoring these monitors
does not affect soundness, and it would be very easy to special-case calls to
stop all monitors except so that the monitors would be started before
the pthread create call.



ply that the accesses form a data race. This is stated in the
following theorem:

Theorem 1. Consider two IFRs I1 and I2 for actions (t1,
k1, u1) and (t2, k2, u2). Assume that t1 6= t2 and that k1
and k2 are either read(x) or write(x), and at least one is a
write. Then if I1 and I2 overlap, (t1, k1, u1) and (t2, k2, u2)
form a data race.

First, we define interference-free regions and data races
with respect to our formal model.

Definition 1 (IFR). An IFR is a triple I = (ubegin, uaccess,
uend) where the following conditions hold:

1. There exist t, kaccess, and x such that (t, kaccess, uaccess) ∈
A and either kaccess = read(x) or kaccess = write(x).

2. ubegin <sb u
access <sb u

end.
3. For all u such that ubegin <sb u ≤sb uaccess, u’s associ-

ated kind is not an acquire synchronization.
4. For all u such that uaccess ≤sb u ≤sb uend, u’s associ-

ated kind is not a release synchronization.

Definition 2 (Data race). Two actions (t1, k1, u1) and (t2,
k2, u2) ∈ A form a data race if:

1. t1 6= t2;
2. k1 and k2 are either reads or writes of the same variable,

and at least one is a write;
3. and the two actions are not ordered by happens-before:

u1 6≤hb u2 and u2 6≤hb u1.

Suppose we have two IFRs I1 and I2 in a given execution.
I1 and I2 do not overlap if either I1 ends before I2 begins,
or I2 ends before I1 begins. Therefore, we say that two IFRs
overlap if neither of these conditions holds:

Definition 3 (Overlapping IFRs). Two IFRs I1 = (ubegin
1 ,

uaccess
1 , uend

1 ) and I2 = (ubegin
2 , uaccess

2 , uend
2 ) overlap if

uend
1 6≤hb u

begin
2 and uend

2 6≤hb u
begin
1 .

In order to prove our main theorem, we first prove a sup-
porting lemma about the structure of happens-before edges.
Effectively, we need to show that in order for there to be
a happens-before edge between two actions in different
threads, there must be a release synchronization action in
the first thread that is sequenced after the first action, and an
acquire synchronization action in the second thread that is
sequenced before the second action.

Lemma 1. Let (t1, k1, u1), (t2, k2, u2) ∈ A such that t1 6=
t2 and u1 ≤hb u2. Then there exist u3 and u4 such that
u1 ≤sb u3 ≤hb u4 ≤sb u2, u3’s associated kind is a release
synchronization, and u4’s associated action is an acquire
synchronization.

The proof of Lemma 1 is given in Appendix A . Lemma
1 leads directly to the proof of Theorem 1.

Proof. Let I1 = (ubegin
1 , uaccess

1 , uend
1 ) and I2 = (ubegin

2 ,
uaccess
2 , uend

2 ). Assume that the two accesses do not form a

data race; i.e. that either uaccess
1 ≤hb uaccess

2 or uaccess
2 ≤hb

uaccess
1 . Proceed by cases:

1. uaccess
1 ≤hb uaccess

2 . By Lemma 1, this happens-before
edge must go through a release action in Thread t1, and
an acquire action in Thread t2. Formally, there exist u3

and u4 such that uaccess
1 ≤sb u3 ≤hb u4 ≤sb uaccess

2 ,
u3 is a release synchronization, and u4 is an acquire
synchronization. By Definition 1, it must be the case
that the release and acquire actions do not fall in I1 and
I2, respectively: uend

1 ≤sb u3 and u4 ≤sb ubegin
2 . By

transitivity of happens-before, we have that uend
1 ≤hb

ubegin
2 , contradicting our assumption that the two IFRs

overlap.
2. uaccess

2 ≤hb uaccess
1 . This case is symmetric to the first.

We have therefore proved that our algorithm produces no
false positives.

6. Evaluation
There are four main goals to our evaluation of IFRit: (1)
We highlight IFRit’s low runtime overheads and character-
ize the impact of sampling on IFRit’s overheads; (2) We
demonstrate that IFRit effectively detects data races in sev-
eral mature applications and assess the impact of sampling
on IFRit’s race-detection capability; (3) We qualitatively an-
alyze the output of IFRit by examining several discovered
races; and (4) Throughout our evaluation, we provide a head-
to-head comparison with ThreadSanitizer, a state-of-practice
happens-before data-race detection tool with widespread
commercial adoption [25] and FastTrack, a state-of-the-art
happens-before data-race detection tool [10, 21].

This section focuses on comparison with precise data-
race detectors; in Section 7 we discus other imprecise ap-
proaches, such as detectors that implement sophisticated
sampling techniques [6, 18] or detectors that use hardware
watchpoints [9].

6.1 Experimental Setup
To benchmark IFRit, we used the PARSEC-2.1 benchmark
suite [3] and a set of real applications. PARSEC is comprised
of a set of programs representative of emerging concurrent
applications, such as data mining, vision, and video encod-
ing. We ran the PARSEC benchmarks with their 8 threaded
pthreads configuration on the simsmall input set. We ex-
cluded three of the 13 benchmarks: one, freqmine, used
OpenMP for synchronization, and our runtime currently su-
ports only pthreads; a second, vips, used GLib for synchro-
nization, which our runtime uses for hash tables and there-
fore cannot be instrumented; a third, facesim, crashed during
our tests due to memory requirements.

To evaluate IFRit further, we used unmodified versions
of MySQL, Apache, and PBZip2. MySQL is an industrial-
strength database server. We used MySQL-5.5.15, running
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Figure 8. Overhead of IFRit compared to uninstrumented code for the PARSEC benchmarks and a suite of real applications.
Average and geometric mean are over the first eight PARSEC benchmarks.

with its default configuration. To benchmark MySQL, we
used the sysbench OLTP benchmark running under its de-
fault configuration. Apache is a webserver. We used ver-
sion httpd-2.0.48 with its “worker” thread configuration.
We ran tests using ApacheBench, issuing 10000 requests
from 8 request threads. PBZip2 is a parallel file compres-
sion/decompression tool. We used PBZip2-0.9.1, running
with 8 threads. To benchmark PBZip2, we decompressed a
150MB text file.

We compiled applications using LLVM and our instru-
menting compiler pass. For our baseline, we compiled ap-
plications using LLVM, but without our instrumenting pass.
The PARSEC benchmarks were run on a dual 4-core 2.27
GHx Intel Xeon E5562 with 10GB of RAM. The real appli-
cations were run on a 4-core 2.8 GHz Intel Xeon E5462 with
16GB of RAM.

In our evaluation we directly compared IFRit to Thread-
Sanitizer’s Valgrind implementation [25] and an implemen-
tation of FastTrack for C/C++ using DynamoRio [21]. We
ran experiments with ThreadSanitizer on our machines. The
authors of [21] provided us with data from their exper-
iments with their FastTrack implementation; they used a

quad-socket, 8-core 2.0 GHz Intel Xeon X7550 for their ex-
periments.

6.2 Overheads
PARSEC Figure 8 shows the overheads imposed by IFRit
on the PARSEC benchmarks compared to FastTrack and
ThreadSanitizer. FastTrack data was available for only the
first eight PARSEC benchmarks, so we have listed the av-
erage and geometric mean for those programs only. The ge-
ometric mean de-emphasizes the effect of outliers. We ran
each PARSEC program three times for each sampling rate
and used the mean of the three execution times. In addition
to the fully instrumented IFRit data, we show the overheads
for a variant of IFRit where short-scope monitors are limited
to a maximum of ten monitors per static call site at a time.

IFRit’s overheads are low. On all but three PARSEC
benchmarks, the fully instrumented version of IFRit out-
performs ThreadSanitizer. For four of the eight benchmarks
for which we have FastTrack numbers, IFRit outperforms
FastTrack. The geometric mean of IFRIT’s slowdown across
the entire PARSEC suite is 46.3x, compared to 147.4x for
ThreadSanitizer and 57.3x for FastTrack. If we enable the
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Figure 9. Effect of sampling on IFRit’s performance overhead. Average and geometric mean are over the ten PARSEC
benchmarks.

short-scope optimization, which limits the number of moni-
tors per static call site, IFRit performs better than both Fast-
Track and ThreadSanitizer on every PARSEC benchmark,
with an overall geometric mean of 12.2x.

Several of the benchmarks (blackscholes, raytrace, x264,
canneal) have especially low overheads. The main reason for
these low overheads is that the structure of the parallelism in
these programs amortizes the analysis cost imposed when
monitors start and end. Blackscholes has fork-join structure,
so it does little sharing and few monitor starts and ends,
relative to the amount of computation being performed by
the program.

Bodytrack, swaptions, fluidanimate, streamcluster, dedup
and ferret saw higher overheads. In these cases, more fre-
quent starting and stopping of monitors leads to a larger frac-
tion of the execution time spent running IFRit’s instrumenta-
tion code. These applications also tend to have many short-
scope monitors. For example, in streamcluster threads re-
peatedly iterate over arrays of points, coordinated via barrier
synchronization calls. This results in many short-scope mon-

itors, since most memory accesses happen within tight loops,
as well as many calls to stop all monitors except, since
there are so many calls to pthread_barrier_wait. Note
that streamcluster’s performance greatly improves when we
cap the number of short-scope monitors.

Overall, these data show that IFRit’s overheads are com-
parable to prior race detection tools [10, 21, 25]. In most
of our benchmarks, monitors are started and stopped in-
frequently enough that the cost of our instrumentation is
amortized by program execution. In these cases, IFRit’s low
overhead results from not having to instrument every mem-
ory access. For benchmarks with a large number of short-
scope monitors, selectively omitting some monitors on a
per-call-site basis is extremely effective in recovering perfor-
mance without sacrificing much coverage (we discuss cov-
erage more in Section 6.3).

Real applications Figure 8 also shows overheads for the
real applications compared to uninstrumented execution. For
these applications, we ran the benchmarking code only once
per configuration.



IFRit’s overhead running on real applications is similar to
the overheads we saw for PARSEC. Our best case is PBZip,
with overheads around 4x. Like dedup and blackscholes,
PBZip has low overhead because of its parallelism strategy.
In PBZip workers share data with a main thread through a
worklist, but synchronize infrequently. The infrequent start-
ing and stopping of monitors that results leads to PBZip’s
low overhead. Our experiments with PBZip show how avoid-
ing per-memory-operation overhead saves performance. In
FastTrack and ThreadSanitizer, each data access is instru-
mented to check or update a vector clock. In contrast, IFRit
only needs to update its state at the beginning of large re-
gions during which many data accesses are performed.

IFRit’s worst case full application is MySQL, which
incurs a 66X overhead. While higher than the overheads
in Apache and PBZip, IFRit’s overhead is far lower than
ThreadSanitizer’s overhead of around 160X.

When we apply our short-scope monitor optimization
MySQL’s overhead is reduced to 59X. The difference indi-
cates that short-scope monitors contribute to MySQL’s over-
head. Both PBZip and Apache saw little benefit from the
short-scope monitor optimization, suggesting their perfor-
mance is not limited by starting and stopping short-scope
monitors.

6.2.1 Impact of Sampling on Performance
Figure 9 gives the overheads for IFRit with sampling en-
abled for 1%, 10% and 50% of the execution time. We give
the average and geometric mean for all 10 PARSEC bench-
marks. Sampling is very effective at reducing IFRit’s over-
heads for PARSEC, with a geometric mean of 4.2x, 2.6x,
and 2.0x slowdown for 50%, 10% and 1% sampling, respec-
tively. Sampling also helps a great deal for the some of the
real applications. MySQL runs much faster under sampling
(15-30 times faster), but under sampling, no data races are
detected (see Table 1). Apache, on the other hand, runs with
nearly no overhead under sampling, and still detects many
data races – half of the races reported without sampling are
reported with a 50% sampling rate, and 30% of the races
reported without sampling are still reported with a 1% sam-
pling rate. PBZip also enjoys nearly no overhead with 50%
sampling and still detects all the races reported by IFRit
without sampling.

6.3 Race-Detection Coverage
Table 1 lists the number of unique races reported by our tool
for the benchmarks. We found races in all three real applica-
tions and in four of the 13 PARSEC benchmarks. To assess
the coverage of IFRit, we directly compare to the coverage
of ThreadSanitizer. We discuss the races found by IFRit and
ThreadSanitizer in Section 6.4. The data show that in each of
the PARSEC programs that had any races reported, Thread-
Sanitizer detects some races that IFRit did not detect. The
programs with the biggest difference in coverage are ferret
and x264. In x264, ThreadSanitizer found 72 races while

IFRit
Races 1% 10% 50% 10/PC Full TS
bodytrack 1 1 1 5 5 10
x264 – – 2 3 3 72
streamcluster 1 1 2 2 3 24
ferret – – – – – 38
Apache 6 8 10 19 19 21
PBZip – – 2 2 2 2
MySQL – – – 11 11 14

Table 1. Number of unique races found by IFRit in various
configurations. TS shows races reported by ThreadSanitizer.
Omitted benchmarks had no detected races.

IFRit found only 3. In ferret, IFRit missed all of the races
ThreadSanitizer reported. As we shall discuss in Section 6.4,
many of these races are related to memory accesses in code
not instrumented by IFRit. Note that missing these races is a
limitation of our prototype, not a fundamental limitation of
our IFR-based approach.

In contrast, in the real application benchmarks we used,
IFRit’s coverage is nearly identical to ThreadSanitizer’s cov-
erage. IFRit and ThreadSanitizer detect the same races as
PBZip. IFRit misses two races in Apache, and three races in
MySQL.

6.3.1 Impact of Short-Scope Monitor Optimizaton on
Coverage

When we limit the number of short-scope monitors per code
point, IFRit’s coverage is identical in all cases except stream-
cluster. Streamcluster executes a loop that starts short-scope
monitors. The memory accesses in the first 512 iterations of
the loop are not racy, but the remaining accesses are racy.
The accesses occur at the same code point, so we miss these
races with this optimization enabled.

Looking back to Figure 8, the data show that the reduction
in overhead resulting from this optimization is very large.
The data in Table 1 show that the degradation of coverage
is almost negligible. Together these results demonstrate that
limiting the number of short-scope monitor’s per code point
is beneficial.

6.3.2 Impact of Sampling on Coverage
Sampling reduces IFRit’s coverage, but even with sampling
IFRit detects many data-races. Sampling 50% of the execu-
tion, IFRit detects some races in all programs in which it de-
tected races without sampling, except MySQL. Using even
sparser sampling further reduces IFRit’s coverage. However,
even with a sample rate of 1% IFRit still detects races in
streamcluster, bodytrack, and Apache.

The data in Figure 9 show that sampling reduces over-
heads considerably—the geometric mean overhead at 1%
sampling rate is about 2X, and only slightly higher at 10%
sampling rate. The data in Table 1 show that IFRit is still
useful for finding data-races when sampling is active. To-
gether, these results show that sampling is one way to trade
off precision for increased performance.



6.4 Analysis of Detected Races
In order to track down these reported data races, we com-
piled and ran a second version of each racy benchmark with
debugging information and less aggressive optimization.
Our tool prints out the program counter for the start mon-

itors call for each side of the data race, as well as a stack
trace for the call that triggered the report. The static analysis
also prints a list of instrumentation calls and their associated
accesses.

6.4.1 Races in PARSEC
Most of the PARSEC benchmarks had no races reported by
either IFRit or ThreadSanitizer. (We did not have access to
the DynamoRIO FastTrack race reports, but the paper men-
tions a race in canneal which neither IFRit nor ThreadSan-
itizer reported.) Both tools found races in bodytrack, x264,
and streamcluster. ThreadSanitizer also found races in ferret
which were not detected by IFRit.

Bodytrack IFRit found five data races in bodytrack, four
of which were caused by the same bug involving the misuse
of condition variables. The last race was caused by threads
reading a structure that had not been fully initialized.

ThreadSanitizer reported 10 unique races, including the
two problems identified by IFRit. ThreadSanitizer also
found a race involving an unprotected counter which was
not reported in IFRit. However, that race did show up in
IFRit during runs run with a larger input (simmedium), and
running IFRit on the simmedium input was faster than run-
ning ThreadSanitizer on the simsmall input. Fixing these
three root causes resolved all of the race reports from both
ThreadSanitizer and IFRit.

X264 IFRit reported three data races in x264, one of which
was confirmed by ThreadSanitizer. ThreadSanitizer reported
72 races, most of them within memcpy in libc, which was not
instrumented by IFRit’s static analysis and therefore was not
monitored for races.

Streamcluster IFRit reported three data races in stream-
cluster. Two of the races were on local variables declared
static. static local variables are scoped to their func-
tion or block, but correspond to a single global object, so
threads executing the function simultaneously can race on
the variable. The third race was caused by a missing barrier
call. It appears that the pthreads code was improperly trans-
lated from code that used Intel’s TBB (Threading Building
Blocks) Library.10

ThreadSanitizer reported 23 unique races in streamclus-
ter, including the three reported by IFRit. We determined
that the remaining races reported by ThreadSanitizer boiled
down to two root causes. First, a function passed its argu-
ments by value rather than by reference; since pass-by-value
arguments are not listed as loads in the LLVM IR, IFRit did

10 http://threadingbuildingblocks.org/

not instrument those memory accesses. The second race was
on a pointer being freed, which ThreadSanitizer counts as a
write and IFRit does not.

Ferret ThreadSanitizer found 43 races in ferret that were
not reported by IFRit. Two races, one on a shared counter
and a second on a shared boolean flag, were not detected by
IFRit because the racy monitors in IFRit were of very short
duration, and never happened to overlap. The remaining
races were in libc, which was not instrumented by IFRit’s
static analysis and therefore was not monitored.

6.4.2 Races in Real Applications
MySQL IFRit reported 11 races in MySQL. Three races
in MySQL were the result of unsynchronized accesses to
termination flags written in the main program thread and
read in a signal handling thread during server shutdown. Two
reported races involved lock meta-data in MySQL’s wrapper
for pthread locks.

The remaining races are on unsynchronized flags and a
linked list implementation in debugging code. These races
are unsurprising. Debugging code is often disabled in pro-
duction, so it may be less thoroughly tested than other code.

IFRit and ThreadSanitizer had comparable coverage for
MySQL. ThreadSanitizer reported 14 races in MySQL, in-
cluding 9 of the 11 races that IFRit reported. ThreadSani-
tizer did not report two races IFRit reported and IFRit did
not report four races that ThreadSanitizer reported.

Apache IFRit reported 19 different races in Apache. Seven
were caused by a well-known bug in Apache’s logging code
that can lead to garbled log output [15, 17, 27]. Five more
were caused by races that nearby comments indicated were
known or intentional. Intentional or not, these races should
be reported because even “benign” races can result in in-
correct behavior [4]. The other races were all on improperly
synchronized flags.

IFRit has nearly the same race detection coverage as
ThreadSanitizer. IFRit detected all the races reported by
ThreadSanitizer except for two. ThreadSanitizer did not re-
port one of the two flag races that IFRit detected.

PBZip IFRit reported two races in PBZip. One of the races
involves unsynchronized accesses to a flag variable signaling
a termination condition to worker threads.

The other race involves concurrent accesses to fields of an
output buffer structure. One thread fills the buffer and writes
the fields. Concurrently, the thread that empties the buffer
reads the fields without synchronizing.

The races reported by IFRit were the same races reported
by ThreadSanitizer.

6.5 Discussion: IFRit vs. Other Detectors
Throughout this evaluation, we have compared IFRit directly
to FastTrack and ThreadSanitizer. Like these precise detec-
tors, IFRit is sound, so for all three there are no false positive



races reported. FastTrack and ThreadSanitizer are also com-
plete, meaning they detect all races in an execution. IFRit is
not complete, but the data show that IFRit exploits a critical
tradeoff of completeness for performance.

Figure 8 shows that IFRit’s overhead is much lower than
FastTrack and ThreadSanitizer. For the PARSEC programs,
IFRit consistently outperformed the other techniques with
our short-scope monitor optimization enabled. Comparing
IFRit’s overhead on our real application benchmarks to the
overhead of ThreadSanitizer, IFRit is the clear winner with
overheads far less than ThreadSanitizer. IFRit’s performance
advantage is a key distinction from prior techniques.

Table 1 shows that IFRit detects most of the races de-
tected by FastTrack and ThreadSanitizer in the application
code of the programs we evaluated. While we provide no
completeness guarantee, our data show that IFRit is a pow-
erful tool for detecting data-races.

Together our performance and coverage results illustrate
that IFRit recovers a large amount of performance by trading
off what we empirically found to be a small margin of com-
pleteness. We consider this tradeoff profitable, as the reduc-
tion in overhead makes data-race detection cheap enough for
practical frequent use. FastTrack and ThreadSanitizer pay a
very high performance cost to provide completeness guaran-
tees. Their overhead may be a barrier to their frequent use by
developers in practice.

Another important distinction between IFRit and both
prior detectors is IFRit’s ability to sample program execu-
tion. Sampling gives developers a knob to turn that scales
back the overhead of race detection. FastTrack and Thread-
Sanitizer do not provide such a knob. IFRit’s overheads with
sampling enabled are sometimes less than 2X. Furthermore,
as we describe in Section 6.3 IFRit still detects many races
detected by the precise detectors with sampling enabled.
IFRit’s soundness guarantees, combined with such low over-
heads make it practical to integrate race detection with a
development framework like continuous testing [23]. Fast-
Track’s and ThreadSanitizer’s overheads are likely to be too
high for continuous use. In some cases (e.g., Apache, PBZip,
canneal, blackscholes) IFRit’s overheads are low enough
that they would be tolerable for use in deployed systems.

7. Related Work
A variety of tools have been developed to help find data
races. Static race detection tools [1, 8, 20] analyze program
code, and attempt to prove the absence of data races in all
program executions. Static techniques are useful in that they
can statically prove a program is data-race-free, but they also
must be conservative because they lack information that is
available only during program execution. We will focus on
dynamic techniques.

Dynamic race detectors mostly fall into two categories:
happens-before detectors [6, 10, 18, 21, 25] and lockset de-
tectors [24]. Lockset detectors like Eraser [24] track the

locks held at each access and report a race if accesses to a lo-
cation are not consistently protected by the same lock. These
techniques are based on a heuristic—that every shared vari-
able will be consistently protected by the same lock—which
may lead to false positives. Although it is possible to reduce
false positives by introducing more heuristics (e.g., read-
only data), any false positives represent a waste of the devel-
oper’s time. This problem with false positives also applies to
hybrid techniques such as MultiRace [22], RaceTrack [28],
and ThreadSanitizer’s hybrid mode [25].

Happens-before detectors work by tracking the order of
synchronization actions in order to determine if conflicting
accesses are or are not ordered by happens-before. Typically,
these algorithms use vector clocks [19], a data structure
that tracks the relative timing between different threads of
execution in a process. Such race detectors report a data
race if two accesses to the same shared state occur are not
ordered by the happens-before relation. ThreadSanitizer’s
non-hybrid mode (which we used for comparison to IFRit
in Section 6) is a standard happens-before detector that uses
valgrind to instrument binaries.

The current state-of-the-art implementation of vector
clocks, FastTrack [10], achieves an average 8.5x slowdown
and is fully precise — i.e., it produces no false positives and
reports at least one race if the execution contained any races.
FastTrack achieves this relatively low overhead by looking
only for shortest races—i.e., if access A races with later ac-
cesses B and C, only the race with access B will be reported.
Practically, this means that the algorithm only has to track
the most recent writer for each shared variable. In its current
form, IFRit performs comparably to FastTrack when either
sampling enabled or the short-scope optimization are en-
abled. This is significant since FastTrack is implemented in
a managed language (Java), while IFRit runs on unmanaged
code (C/C++).

As dicussed in Section 6, a recent paper reimplemented
FastTrack for x86 binaries using the DynamoRio instrumen-
tation platform [21]. As expected, FastTrack is still more
efficient than a standard happens-before detector (Thread-
Sanitizer), but its overheads are much more noticeable than
the Java versions: a geometric mean of around 50x for a set
of 10 PARSEC benchmarks. The authors of that paper re-
duce the overheads by about 50% using Aikido, a custom
hypervisor that uses page faults to quickly detect conflicts.
We compared IFRit to the non-Aikido version of FastTrack,
since IFRit does not require a custom hypervisor. IFRit, even
without any sampling enabled, outperforms FastTrack, with
a geometric mean of 36.3x on eight of the ten benchmarks
used for FastTrack (FastTrack’s geometric mean for those
eight was 57.4x). In turn, FastTrack detects more data races
than IFRit, since FastTrack is a fully-precise algorithm.

Several other tools have been developed that use sampling
to reduce the overhead of fully-precise vector-clock detec-
tors. Pacer uses FastTrack during sampling periods, and also



does a small amount of work during non-sampled periods to
ensure proportionality: the number of races detected should
scale linearly with the size of the sampling period [6]. Un-
like Pacer, IFRit does not do any work during non-sampled
periods (except to check a boolean flag), so we miss races
where only one of the monitor starts is sampled. However,
the relatively smaller number of instrumentation points in
IFRit means that we can afford to sample for longer peri-
ods, which mitigates Pacer’s concern about proportionality.
Our overheads at 10% sampling are comparable to Pacer’s
at 10%, even though we are running on C/C++ code instead
of Java.

LiteRace [18] also uses sampling to improve the perfor-
mance of vector clocks. They use dynamic profiling to iden-
tify “cold” functions, which they hypothesize are more likely
to contain unnoticed data races. This adaptive sampling is a
technique we could adapt to IFR-based data race detection.
LiteRace achieves low overheads via adaptive sampling and
also by using logging to postpone race checks until after ex-
ecution. Like us, LiteRace runs on unmanaged C/C++ code,
although they instrument binaries rather than source code.
IFRit has higher overheads than LiteRace, but we perform
race checks at runtime instead of offline. IFRit’s overheads
with sampling are comparable to those for LiteRace with
thread-local adaptive sampling.

DataCollider [9] is a heuristic detector that tries to catch
data races in OS kernels “red-handed”: it freezes one thread
before a memory access, and sets a hardware watchpoint to
trap writes to the memory location in other threads. This is
similar to IFRit in that both try to identify accesses that hap-
pen at roughly “the same time.” IFRit differs from DataCol-
lider in that we do not require hardware watchpoints, so we
can monitor many variables simultaneously.

8. Conclusion & Future Work
We have presented IFRit, a new dynamic data-race detection
algorithm for arbitrary C and C++ programs. IFRit improves
on prior work by coalescing the instrumentation for multiple
accesses to the same variable, reducing runtime overhead.
We require no specialized hardware and detect races with no
false positives.

IFRit is a natural approach to dynamic data-race detec-
tion without the overhead of tracking a full happens-before
relation. Our prototype implementation of this algorithm in-
dicates that we can detect races in real programs without in-
ducing too much overhead.

A possible future improvement would be to improve our
strategy for short-scope monitors. Our current scheme sim-
ply limits the number of short-scope monitors per static call
site; a more adaptive strategy (say, starting a monitor with
probability inversely proportional to the number of active
monitors at that call site) would be more thorough.

We plan to extend our static analysis to be interprocedu-
ral. Currently, we treat function calls conservatively, some-

times starting monitors later than necessary. Interprocedural
analysis allows us to propagate information through func-
tion calls, increasing the lengths of monitored regions, and
finding data races. We also plan to implement IFRit for Java
programs.
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A. Proof of Lemma 1
Lemma 1. Let (t1, k1, u1), (t2, k2, u2) ∈ A such that t1 6=
t2 and u1 ≤hb u2. Then there exist u3 and u4 such that
u1 ≤sb u3 ≤hb u4 ≤sb u2, u3’s associated kind is a release
synchronization, and u4’s associated action is an acquire
synchronization.

Proof. Proof by induction on the derivation of u1 ≤hb u2.

• As t1 6= t2, u1 6≤sb u2.
• If u1 <sw u2. By the definition of <sw, u1 is a release

synchronization and u2 is an acquire synchronization.
Let u3 = u1 and u4 = u2. By reflexivity of ≤sb, we
have that u1 ≤sb u3 ≤hb u4 ≤sb u2.
• If u1 ≤hb u5 ≤hb u2, let t5 be the thread ID for u5. Either
t5 = t1, t5 = t2, or t5 6= t1 and t5 6= t2.

t5 = t1. Then t5 6= t2, so by the inductive hypothesis
there exist u6 and u7 such that u5 ≤sb u6 ≤hb

u7 ≤sb u4, u6 is a release synchronization, and u7 is
an acquire synchronization. Let u3 = u6 and u4 =
u7. As t5 = t1 and u1 ≤hb u5, it must be that
u1 ≤sb u5, and by transitivity of ≤sb, u1 ≤sb u6.
Therefore u1 ≤sb u6 ≤hb u7 ≤sb u2.
t5 = t2. Then t5 6= t1, so by the inductive hypothesis
there exist u6 and u7 such that u1 ≤sb u6 ≤hb

u7 ≤sb u5, u6 is a release synchronization, and u7 is
an acquire synchronization. Let u3 = u6 and u4 =
u7. As t5 = t2 and u5 ≤hb u2, it must be that
u5 ≤sb u2, and by transitivity of ≤sb, u7 ≤sb u2.
Therefore u1 ≤sb u6 ≤hb u7 ≤sb u2.
t5 6= t1 and t5 6= t2. We apply the inductive hy-
pothesis twice. First, there exist u6 and u7 such that
u1 ≤sb u6 ≤hb u7 ≤sb u5 and u6 is a release syn-
chronization. Second, there exist u8 and u9 such that
u5 ≤sb u8 ≤hb u9 ≤sb u2 and u9 is an acquire syn-
chronization. Let u3 = u6 and u4 = u9. By transi-
tivity of ≤hb, we have that u1 ≤sb u6 ≤hb u9 ≤sb

u4.


