
Appears in the Proceedings of 17th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’12)

Architecture Support for
Disciplined Approximate Programming

Hadi Esmaeilzadeh Adrian Sampson Luis Ceze
University of Washington

Department of Computer Science & Engineering
{hadianeh,asampson,luisceze}@cs.washington.edu

Doug Burger
Microsoft Research

dburger@microsoft.com

Abstract
Disciplined approximate programming lets programmers declare
which parts of a program can be computed approximately and con-
sequently at a lower energy cost. The compiler proves statically
that all approximate computation is properly isolated from precise
computation. The hardware is then free to selectively apply ap-
proximate storage and approximate computation with no need to
perform dynamic correctness checks.

In this paper, we propose an efficient mapping of disciplined
approximate programming onto hardware. We describe an ISA ex-
tension that provides approximate operations and storage, which
give the hardware freedom to save energy at the cost of accuracy.
We then propose Truffle, a microarchitecture design that efficiently
supports the ISA extensions. The basis of our design is dual-voltage
operation, with a high voltage for precise operations and a low
voltage for approximate operations. The key aspect of the microar-
chitecture is its dependence on the instruction stream to determine
when to use the low voltage. We evaluate the power savings poten-
tial of in-order and out-of-order Truffle configurations and explore
the resulting quality of service degradation. We evaluate several ap-
plications and demonstrate energy savings up to 43%.

Categories and Subject Descriptors C.1.3 [Other Architecture
Styles]; C.0 [Computer Systems Organization]: Hardware/software
interfaces

General Terms Design, Performance

Keywords Architecture, disciplined approximate computation,
power-aware computing, energy

1. Introduction
Energy consumption is a first-class concern in computer systems
design. Potential benefits go beyond reduced power demands in
servers and longer battery life in mobile devices; reducing power
consumption is becoming a requirement due to limits of device
scaling in what is termed the dark silicon problem [4, 11].

Prior work has made significant progress in various aspects of
energy efficiency. Hardware optimizations include power gating,
voltage and frequency scaling, and sub-threshold operation with

[Copyright notice will appear here once ’preprint’ option is removed.]

error correction [10]. Software efforts have explored managing
energy as an explicit resource [30], shutting down unnecessary
hardware, and energy-aware compiler optimizations [28]. Raising
energy concerns to the programming model can enable a new space
of energy savings opportunities.

Trading off quality of service is one technique for reducing
energy usage. Allowing computation to be approximate can lead
to significant energy savings because it alleviates the “correctness
tax” imposed by the wide safety margins on typical designs. In-
deed, prior work has investigated hardware and algorithmic tech-
niques for approximate execution [2, 12, 14, 16]. Most applica-
tions amenable to energy–accuracy trade-offs (e.g., vision, machine
learning, data analysis, games, etc.) have approximate components,
where energy savings are possible, and precise components, whose
correctness is critical for application invariants [19, 23].

Recent work has explored language-level techniques to assist
programmers in identifying soft slices, the parts of programs that
may be safely subjected to approximate computation [23]. The
hardware is free to use approximate storage and computation for the
soft slices without performing dynamic safety checks. Broadly, we
advocate co-designing hardware support for approximation with
an associated programming model to enable new energy-efficiency
improvements while preserving programmability.

In this paper, we explore how to map disciplined approximate
programming models down to an approximation-aware microarchi-
tecture. Our architecture proposal includes an ISA extension, which
allows a compiler to convey what can be approximated, along with
microarchitectural extensions to typical in-order and out-of-order
processors that implement the ISA. Our microarchitecture proposal
relies on a dual voltage supply for SRAM arrays and logic: a high
V
dd

(leading to accurate operation) and a low V
dd

(leading to ap-
proximate but lower-power operation). We discuss the implemen-
tation of the core structures using dual-voltage primitives as well as
dynamic, instruction-based control of the voltage supply. We eval-
uate the energy consumption and quality-of-service degradation of
our proposal using a variety of benchmarks including a game en-
gine, a raytracer, and scientific algorithms.

The remainder of this paper is organized as follows. Section 2
describes our ISA proposal and its support for an efficient microar-
chitecture via tight coupling with static compiler guarantees. Sec-
tion 3 then explains microarchitecture implementation alternatives.
Section 4 follows up with a detailed description of our dual-voltage
microarchitecture and how the instruction stream can control dy-
namic voltage selection. Section 5 is our evaluation of power sav-
ings and quality-of-service degradation. Sections 6 and 7 discuss
related work and conclude.

1 2012/1/11

2. An ISA for Disciplined Approximate
Computation

With disciplined approximate programming, a program is decom-
posed into two components: one that runs precisely, with the typical
semantics of conventional computers, and another that runs approx-
imately, carrying no guarantees but only an expectation of best-
effort computation. Many applications, such as media processing
and machine learning algorithms, can operate reliably even when
errors can occur in portions of them [8, 9, 18, 23, 27]. Floating-
point data, for example, is by nature imprecise, so many FP-heavy
applications have inherent tolerance to error. An architecture sup-
porting disciplined approximation can take advantage of relaxed
precision requirements to expose errors that would otherwise need
to be prevented or corrected at the cost of energy. By specifying the
portion of the application that is tolerant to error, the programmer
gives the architecture permission to expose faults when running that
part of the program. We propose an ISA that enables a compiler to
communicate where approximation is allowed.

Our ISA design is defined by two guiding principles: the ISA
should provide an abstract notion of approximation by replacing
guarantees with informal expectations; and the ISA may be unsafe,
blindly trusting the programming language and compiler to enforce
safety invariants statically.

Replacing Guarantees with Expectations ISAs normally provide
formal guarantees for operations (e.g., an “add” instruction must
produce the sum of its operands). Approximate operations, how-
ever, only carry an expectation that a certain operation will be car-
ried out correctly; the result is left formally undefined. For example,
an approximate “add” instruction might leave the contents of the
output register formally undefined but specify an expectation that
the result will approximate the sum of the operands. The compiler
and programmer may not rely on any particular pattern or method
of approximation. Informally, however, they may expect the ap-
proximate addition to be useful in “soft” computation that requires
summation.

The lack of strict guarantees for approximate computation is
essential for abstract approximation. Instructions do not specify
which particular energy-saving techniques are used; they only spec-
ify where approximation may be applied. Consequently, a fully-
precise computer is a valid implementation of an approximation-
aware ISA. Compilers for such ISAs can, without modification,
take advantage of new approximation techniques as they are imple-
mented. By providing no guarantees for approximate computation,
the ISA permits a full range of approximation techniques.

By leaving the kind and degree of approximation unspecified,
an approximation-aware ISA could pose challenges for portabil-
ity: different implementations of the ISA can provide different er-
ror distributions for approximate operations. To address this issue,
implementations can allow software control of implementation pa-
rameters such as voltage (see Section 3). Profiling and tuning mech-
anisms could then discover optimal settings for these hardware pa-
rameters at application deployment time. This tuning would allow
a single application to run at the same level of quality across widely
varying approximation implementations.

Responsibilities of the Language and Compiler An architecture
supporting approximate computing requires collaboration from the
rest of the system stack. Namely, the architecture relegates con-
cerns of safety and programmability to the language and compiler.
In order to be usable, approximate computation must be exposed
to the programmer in a way that reduces the chance of catastrophic
failures and other unexpected consequences. These concerns, while
important, can be relegated to the compiler, programming lan-
guage, and software-engineering tools.

EnerJ [23] is a programming language supporting disciplined
approximation. Using a type system, EnerJ provides a static non-
interference guarantee, ensuring that the approximate part of a pro-
gram cannot affect the precise portion. In effect, EnerJ enforces
separation between the error-tolerant and error-sensitive parts of
a program, identifying and isolating the parts that may be subject
to relaxed execution semantics. This strict separation brings safety
and predictability to programming with approximation. Because it
is static, the non-interference guarantee requires no runtime check-
ing, freeing the ISA (and its implementation) from any need for
safety checks that would themselves impose overheads in perfor-
mance, energy, and design complexity.

In this paper, we assume that a language like EnerJ is used to
provide safety guarantees statically to the programmer. The ISA
must only expose approximation as an option to the compiler: it
does not provide dynamic invariant checks, error recovery, or any
other support for programmability. The ISA is thus unsafe per
se. If used incorrectly, the ISA can produce unexpected results. It
is tightly coupled with the compiler and trusts generated code to
observe certain invariants. This dependence on static enforcement
is essential to the design of a simple microarchitecture that does not
waste energy in providing approximation.

2.1 Requirements for the ISA
An ISA extension for disciplined approximate programming con-
sists of new instruction variants that leave certain aspects of their
behavior undefined. These new instructions must strike a balance
between energy savings and usability: they must create optimiza-
tion opportunities through strategic use of undefined behavior but
not be so undefined that their results could be catastrophic. Namely,
approximate instructions should leave certain data values undefined
but maintain predictable control flow, exception handling, and other
bookkeeping.

To support a usable programming model similar to EnerJ, an
approximation-aware ISA should exhibit the following properties:

• Approximate computation must be controllable at an instruc-
tion granularity. Approximation is most useful when it can be
interleaved with precise computation. For example, a loop vari-
able increment should likely be precise while an arithmetic op-
eration in the body of the loop may be approximate. For this
reason, it must be possible to mark individual instructions as
either approximate or precise.

• The ISA must support approximate storage. The compiler
should be able to instruct the ISA to store data approximately
or precisely in registers, caches, and main memory.

• It must be possible to transition data between approximate and
precise storage. (In EnerJ, approximate-to-precise movement is
only permitted using an explicit programmer “endorsement,”
but this annotation has no runtime effect.) For full flexibility, the
ISA must permit programs to use precise data approximately
and vice-versa.

• Precise instructions, where approximation is not explicitly en-
abled, must carry traditional semantic guarantees. The effects
of approximation must be constrained to where it is requested
by the compiler.

• Approximation must be confined to predictable areas. For ex-
ample, address computation for memory accesses must always
be precise; approximate store instructions should not be allowed
to write to arbitrary memory locations. Approximate instruc-
tions must not carry semantics so relaxed that they cannot be
used.

2 2012/1/11

Table 1. ISA extensions for disciplined approximate program-
ming. These instructions are based on the Alpha instruction set.

Group Approximate Instruction

Integer load/store LDx.a, STx.a
Integer arithmetic ADD.a, CMPEQ.a, CMPLT.a, CMPLE.a,

MUL.a, SUB.a
Logical and shift AND.a, NAND.a, OR.a, XNOR.a NOR.a, XOR,

CMOV.a, SLL.a, SRA.a, SRL.a
Floating point load/store LDF.a, STF.a
Floating point operation ADDF.a, CMPF.x, DIVF.a, MULF.a, SQRTF.a,

SUBF.a, MOV.a, CMOV.a, MOVFI.a, MOVIF.a

2.2 ISA Extensions for Approximation
Table 1 summarizes the approximate instructions that we propose
adding to a conventional architecture. Without loss of generality,
we assume an underlying Alpha ISA [1].

Approximate Operations The extended ISA provides approxi-
mate versions of all integer arithmetic, floating-point arithmetic,
and bitwise operation instructions provided by the original ISA.
These instructions have the same form as their precise equivalents
but carry no guarantees about their output values. The approxi-
mate instructions instead carry the informal expectation of approxi-
mate adherence to the original instructions’ behavior. For example,
ADD.a takes two arguments and produces one output, but the ISA
makes no promises about what that output will be. The instruction
may be expected to typically perform addition but the programmer
and compiler may not rely on any consistent output behavior.

Approximate Registers Each register in the architecture is, at any
point in time, in either precise mode or approximate mode. When a
register is in approximate mode, reads are not guaranteed to obtain
the exact value last written, but there is an expectation that the value
is likely the same.

The compiler does not explicitly set register modes. Instead, the
precision of a register is implicitly defined based on the precision
of the last instruction that wrote to it. In other words, a precise op-
eration makes its destination register precise while an approximate
operation puts its destination register into approximate mode.

While register precision modes are set implicitly, the precision
of operand accesses must be declared explicitly. Every instruction
that takes register operands is extended to include an extra bit per
operand specifying the operand’s precision. This makes precision
level information available to the microarchitecture a priori, drasti-
cally simplifying the implementation of dual-voltage registers (see
Section 4.1). It does not place a significant burden on the compiler
as the compiler must statically determine registers’ precision any-
way. If the correspondence between register modes and operand
accesses is violated, the value is undefined (see below).

With this design, data can move freely between approximate and
precise registers. For example, a precise ADD instruction may use
an approximate register as an operand; this transition corresponds
to an endorsement in the EnerJ language. The opposite transition,
in which precise data is used in approximate computation, is also
permitted and frequently occurs in EnerJ programs.

Approximate Loads, Stores, and Caching The ISA defines a
granularity of approximation at which the architecture supports set-
ting the precision of cached memory. In practice, this granularity
will likely correspond to the smallest cache line size in the proces-
sor’s cache hierarchy.1 For example, if an architecture has 16-byte
L1 cache lines and supports varying the precision of every cache

1 Note that architects generally avoid tying cache line size to the ISA.
However, we believe that in cases of strong co-design between architecture
and compiler such as ours, it is acceptable to do so.

line, then it defines the approximation granularity to be 16 bytes.
Each region of memory aligned to the granularity of approxima-
tion (hereafter called an approximation line for brevity) is in either
approximate or precise mode at any given time.

An approximation line’s precision mode is implicitly controlled
by the precision of the loads and stores that access it. In particular,
the ISA guarantees reliable data storage for precise accesses if, for
every load from line x, the preceding store to line x has the same
precision. (That is, after a precise store to x, only precise loads
may be issued to x until the next store to x.) For the compiler and
memory allocator, this amounts to ensuring that precise and ap-
proximate data never occupy the same line. Memory allocation and
object layout must be adapted to group approximate data to line-
aligned boundaries. Statically determining each line’s precision is
trivial for any language with sufficiently strong static properties. In
EnerJ specifically, a type soundness theorem implies that the preci-
sion of every variable is known statically for every access.

The ISA requires this pattern of consistent accesses in order
to simplify the implementation of approximation-aware caching.
Specifically, it allows the following simple cache-approximation
policy: a line’s precision is set by misses and writes but is not
affected by read hits. During read hits, the cache can assume that
the precision of the line matches the precision of the access.

Approximate loads and stores may read and write arbitrary
values to memory. Accordingly, precise stores always write data
reliably, but a precise load only reads data reliably when it accesses
a line in precise mode. However, any store (approximate or precise)
can only affect the address it is given: address calculation and
indexing are never approximated.

Approximate Main Memory While this paper focuses on approx-
imation in the core, main memory (DRAM modules) may also
support approximate storage. The refresh rate of DRAM cells, for
example, may be reduced so that data is no longer stored reli-
ably [19]. However, memory approximation is entirely decoupled
from the above notion of approximate caching and load/store pre-
cision. This way, an approximation-aware processor can be used
even with fully-precise memory. Furthermore, memory modules
are likely to support a different granularity for approximation from
caches—DRAM lines, for instance, typically range from hundreds
of bytes to several kilobytes. Keeping memory approximation dis-
tinct from cache approximation decouples the memory from spe-
cific architecture parameters.

The program controls main-memory approximation explicitly,
using either a special instruction or a system call to manipulate
the precision of memory regions. Loads and stores are oblivious to
the memory’s precision; the compiler is responsible for enforcing
a correspondence. When main-memory approximation is available,
the operating system may store precision levels in the page table to
preserve the settings across page evictions and page faults.

Preservation of Precision In several cases, where the ISA sup-
ports both precise and approximate operation, it relies on the com-
piler to treat certain data consistently as one or the other. For exam-
ple, when a register is in approximate mode, all instructions that use
that register as an operand must mark that operand as approximate.
Relying on this correspondence simplifies the implementation of
approximate SRAM arrays (Section 4.1).

The ISA does not enforce precision correspondence. No excep-
tion is raised if it is violated. Instead, as with many other situa-
tions in the ISA, the resulting value from any inconsistent operation
is left undefined. Unlike other approximate operations, however,
the informal expectation in these situations is also weaker: precise
reads from approximate-mode registers, for example, should be ex-
pected to return random data. The compiler should avoid these sit-
uations even when performing approximate computation.

3 2012/1/11

Reg Read Execute Memory Write
Back

Register
File

INT FU

FP FU

D Cache

DTLB

Register
File

LSQ
(OOO)

… …

Figure 1. The data movement/processing plane of the processor
pipeline. Approximation-aware structures are shaded. The instruc-
tion control plane stages (Fetch and Decode, as well as Rename,
Issue, Schedule, and Commit in the OOO pipeline) are not shown.

These situations constitute violations of precision correspon-
dence:

• A register in approximate mode is used as a precise operand
to an instruction. (Note that a precise instruction can use an
approximate operand; the operand must then be declared as
approximate.)

• Conversely, a precise-mode register is used as an approximate
operand.

• An approximate load (e.g., LDW.a) is issued to an address in an
approximation line that is in precise mode.

• Conversely, a precise load is issued to an approximate-mode
line.

In every case, these are situations where undefined behavior is al-
ready present due to approximation, so the ISA’s formal guarantees
are not affected by this choice. Consistency of precision only con-
stitutes a recommendation to the compiler that these situations be
avoided. These weak semantics keep the microarchitecture simple
by alleviating the need for precision state checks (see Section 4.1).

3. Design Space
As discussed above, approximate instructions may produce arbi-
trary results. For example, ADD.a may place any value in its des-
tination register. However, approximate instructions still have de-
fined semantics: ADD.a cannot modify any register other than its
output register; it cannot raise a divide-by-zero exception; it can-
not jump to an arbitrary address. These guarantees are necessary to
make our approximation-aware ISA usable.

Our microarchitecture must carefully distinguish between struc-
tures that can have relaxed correctness and those for which reliable
operation is always required. Specifically, all fetched instructions
need to be decoded precisely and their target and source register
indices need to be identified without error. However, the content
of those registers may be approximate and the functional units op-
erating on the data may operate approximately. Similarly, mem-
ory addresses must be error-free, but the data retrieved from the
memory system can be incorrect when that data is marked as ap-
proximate. Consequently, we divide the microarchitecture into two
distinct planes: the instruction control plane and the data move-
ment/processing plane. As depicted in Figure 1, the data move-
ment/processing plane comprises the register file, data caches, load
store queue, functional units, and bypass network. The instruction
control plane comprises the units that fetch, decode, and perform
necessary bookkeeping for in-flight instructions. The instruction
control plane is kept precise, while the data movement/processing
plane can be approximate for approximate instructions. Since the

data plane needs to behave precisely or approximately depending
on the instruction being carried out, the microarchitecture needs to
do some bookkeeping to determine when a structure can behave
approximately.

This paper explores voltage reduction as a technique for saving
energy. (Other techniques, such as aggressive timing closure or
reducing data width, are orthogonal.) Each frequency level (f

max

)
is associated with a minimum voltage (V

min

) and lowering the
voltage beyond that may cause timing errors. Lowering the voltage
reduces energy consumption quadratically when the frequency is
kept constant. However, we cannot lower the voltage of the whole
processor as this would cause errors in structures that need to
behave precisely. This leads to the core question of how to provide
precise behavior in the microarchitecture.

One way to provide precise behavior, which we explore in this
paper, is to run critical structures at a safe voltage. Alternatively, er-
ror correction mechanisms could be used for critical structures and
disabled for the data movement/processing plane while executing
approximate instructions. This way, the penalty of error checking
would not be incurred for approximate operations. However, if V

dd

were low enough to make approximation pay off, many expensive
recoveries would be required during precise operations. For this
reason, we propose using two voltage lines: one for precise oper-
ation and one for approximate operation. Below we describe two
alternative designs for a dual-voltage microarchitecture.

Unchecked Dual-Voltage Design Our dual-voltage microarchi-
tecture, called Truffle, needs to guarantee that (1) the instruction
control remains precise at all times, and (2) the data processing
plane structures lower precision only when processing approximate
instructions. Truffle has two voltages: a nominal, reliable level, re-
ferred to as V

dd

H , and a lower level, called V
dd

L, which may lead
to timing errors. All structures in the instruction control plane are
supplied V

dd

H , and, depending on the instruction being executed,
the structures in the data processing plane are dynamically supplied
V
dd

H or V
dd

L. The detailed design of a dual-voltage data process-
ing plane, including the register file, data cache, functional units,
and bypass network, is discussed in the next section.

Checked Dual Voltage Design The energy savings potential of
Truffle is limited by the proportion of power used by structures
that operate precisely at V

dd

H . Therefore, reducing the energy con-
sumption of precise operations will lead to higher relative impact of
using approximation. This leads to another possible design point,
which lowers the voltage of the instruction control plane beyond
V
dd

H but not as aggressively as V
dd

L and employs error correc-
tion to guarantee correct behavior using an approach similar to Ra-
zor [10]. We refer to this conservative level of voltage as V

dd

L
high

.
The data plane also operates at V

dd

L
high

when running the pre-
cise instructions and V

dd

L when running the approximate instruc-
tions. Since the instruction control plane operates at the reliable
voltage level, the components in this plane need to be checked and
corrected in the case of any errors. The same checking applies to
the data movement/processing plane while running precise instruc-
tions. While this is an interesting design point, we focus on the
unchecked dual-voltage design due to its lower complexity.

Selecting V
dd

L In the simplest case, V
dd

L can be set statically
at chip manufacture and test time. However, the accuracy of ap-
proximate operations depends directly on this value. Therefore, a
natural option is to allow V

dd

L to be set dynamically depending
on the QoS expectations of the application. Fine-grained voltage
adjustments can be performed after fabrication using off-chip volt-
age regulators as in the Intel SCC [13] or by on-chip voltage reg-
ulators as proposed by Kim et al. [15]. Off-chip voltage regulators
have a high latency while on-chip voltage regulators provide lower-
latency, fine-grained voltage scaling. Depending on the latency re-

4 2012/1/11

quirement of the application and the type of regulator available,
V
dd

L can be selected at deployment time or during execution. Fu-
ture work should explore software-engineering tools that assist in
selecting per-application voltage levels.

4. Truffle: A Dual-Voltage Microarchitecture for
Disciplined Approximation

This section describes Truffle in detail. We start with the design of a
dual-voltage SRAM structure, which is an essential building block
for microarchitectural components such as register files and data
caches. Next, we discuss the design of dual-voltage multiplexers
and level shifters. We then address the design of structures in
both in-order and OOO Truffle cores, emphasizing how the voltage
is selected dynamically depending on the precision level of each
instruction. Finally, we catalog the microarchitectural overheads
imposed by Truffle’s dual-voltage design.

4.1 Dual-Voltage SRAM Array
We propose dual-voltage SRAM arrays, or DV-SRAMs, which can
hold precise and approximate data simultaneously. Like its single-
voltage counterpart, a DV-SRAM array is composed of mats. A
mat, as depicted in Figure 2, is a self-contained memory structure
composed of four identical subarrays and associated predecoding
logic that is shared among the subarrays. The data-in/-out and
address lines typically enter the mat in the middle. The predecoded
signals are forked off from the middle to the subarrays. Figure 2
also illustrates a circuit diagram for a single subarray, which is a
two-dimensional array of single-bit SRAM cells arranged in rows
and columns. The highlighted signals correspond to a read access,
which determines the critical path of the array.

For any read or write to a DV-SRAM array, the address goes
through the predecoding logic and produces the one-hot rowSelect
signals along with the columnSelect signals for the column mul-
tiplexers. During read accesses, when a row is activated by its
rowSelect signal, the value stored in each selected SRAM cell is
transferred over two complementary bitline wires to the sense
amplifiers. Meanwhile, the bitlines have been precharged to a
certain V

dd

. Each sense amplifier senses the resulting swing on the
bitlines and generates the subarray output. The inputs and out-
puts of the sense amplifiers may be multiplexed depending on the
array layout. The sense amplifiers drive the dataOut of the mat for
a read access, while dataIn drives the bitlines during a write
access.

To be able to store both approximate and precise data, we di-
vide the data array logic into two parts: the indexing logic and
the data storage/retrieval logic. To avoid potential corruption of
precise data, the indexing logic always needs to be precise, even
when manipulating approximate data. The indexing logic includes
the address lines to the mats, the predecoding/decoding logic (row
and column decoders), and the rowSelect and columnSelect
drivers. The data storage/retrieval logic, in contrast, needs to alter-
nate between precise and approximate mode. Data storage/retrieval
includes the precharge/equalizing logic, SRAM cells, bitline mul-
tiplexers, sense amplifiers, dataOut drivers and multiplexers, and
dataIn drivers. For approximate accesses, this set of logic blocks
operates at V

dd

L.
In each subarray of a mat, a row of bits (SRAM cells) is either at

high voltage (V
dd

H) or low voltage (V
dd

L). The precision column
in Figure 2, which is a single-bit column operating at V

dd

H , stores
the voltage state of each row. The precision column is composed of
8-transistor cells: 6-transistor SRAM cells each augmented by two
PMOS transistors. In each row, the output of the precision column
drives the power lines of the entire row. This makes it possible to
route only one power line to the data rows as well as the prechargers

and sense amplifiers. This way, the extra V
dd

L power line is only
routed to the precision column in each subarray and is distributed
to the rows through the precision cells, which significantly reduces
the overhead of running two voltage lines.

For a read access, the bitlines need to be precharged to the
same voltage level as the row being accessed. Similarly, the sense
amplifiers need to operate at the same voltage level as the subarray
row being accessed. A precision signal is added to the address
bits and routed to all the mats. The precision signal presets
the voltage levels of the precharge and equalizing logic and the
sense amplifiers before the address is decoded and the rowSelect
and columnSelect signals are generated. This voltage presetting
ensures that the sense amplifiers are ready when the selected row
puts its values on the bitlines during a read. Furthermore, during
a write, the value in the precision column is set based on the
precision signal.

Since the precision cell is selected at the same time as the data
cells, the state stored in the precision column cannot be used to set
the appropriate voltage levels in the sense amplifiers and precharg-
ers. Therefore, the precision information needs to be determined
before the read access starts in the subarrays. This is why our
ISA extensions (Section 2) include a precision flag for each source
operand: these flags, along with the precision levels of instructions
themselves, are used to set the precision signal when accessing
registers and caches.

4.2 Voltage Level Shifting and Multiplexing
Several structures in the Truffle microarchitecture must be able
to deal with both precise and approximate data. For this reason,
our design includes dual-voltage multiplexers, which can multiplex
signals of differing voltage, and voltage level shifters, which enable
data movement between the high- and low-voltage domains.

Figure 3 illustrates the transistor-level design of the single-bit,
one-input dual-voltage multiplexers (DV-Mux) as well as the high-
to-low (H2L) and low-to-high (L2H) level shifters. The select line
of the multiplexer and its associated inverter operate at V

dd

H ,
while the input data lines can swing from 0 V to either V

dd

L or
V
dd

H . The L2H level shifter is a conventional differential low-to-
high level shifter and the H2L level shifter is constructed from two
back-to-back inverters, one operating at V

dd

H and the other oper-
ating at V

dd

L. In addition to the input signal, the level shifters
take an extra input, precision, to identify the voltage level of
input and disengage the level-shifting logic to prevent unneces-
sary power consumption. For example, in the L2H level shifter,
when precision is 0, input is precise (0 V or V

dd

H) and does
not require any level shifting, (output input). However, when
precision is 1, the level shifter is engaged and generates the
output with the required voltage level.

4.3 Truffle’s Microarchitectural Constructs
This section describes the Truffle pipeline stage-by-stage, consid-
ering both in-order and out-of-order implementations. The out-of-
order design is based on the Alpha 21264 [3] and uses a tag-and-
index register renaming approach. We highlight whether a pipeline
stage belongs to the instruction control plane or the data move-
ment/processing plane. Importantly, we discuss how the voltage is
dynamically selected in the structures that support approximation.

Fetch (OOO/in-order) [Instruction Control Plane] The fetch
stage belongs to the instruction control plane and is identical to
a regular OOO/in-order fetch stage. All the components of this
stage, including the branch predictor, instruction cache, and ITLB,
are ordinary, single-voltage structures. Approximate instructions
are fetched exactly the same way as precise instructions.

5 2012/1/11

Precharge(and(Equalizer

Subarray

Bitline(Mux
Sense(Amplifier

Sense(Amplifier(Mux
Subarray(Output(Drivers
Write(Mux(and(Drivers

Precision(Colum
n

W
ordline(Drivers
Row

(Decoder

Predecoder

Precharge(and(Equalizer

Subarray

Bitline(Mux
Sense(Amplifier

Sense(Amplifier(Mux
Subarray(Output(Drivers
Write(Mux(and(Drivers

Pr
ec
isi
on

(C
ol
um

n
W
or
dl
in
e(
Dr
iv
er
s

Ro
w
(D
ec
od

er

Precharge(and(Equalizer

Subarray

Bitline(Mux
Sense(Amplifier

Sense(Amplifier(Mux
Subarray(Output(Drivers
Write(Mux(and(Drivers

Pr
ec
isi
on

(C
ol
um

n
W
or
dl
in
e(
Dr
iv
er
s

Ro
w
(D
ec
od

er

Precharge(and(Equalizer

Subarray

Bitline(Mux
Sense(Amplifier

Sense(Amplifier(Mux
Subarray(Output(Drivers
Write(Mux(and(Drivers

Precision(Colum
n

W
ordline(Drivers
Row

(Decoder

VddHVddH

VddH VddH

precharge

VddHVddH

VddH VddL

rowSelect[i]

columnSelect[j]

senseAmpClk

precision

dataOut[i][j]

Precision)Column

bi
tl

in
e[

j]

bitline[j]

Figure 2. Dual-voltage mat, consisting of four identical dual-voltage subarrays, and partial transistor-level design of the subarrays and the
precision column, which is shaded. The power lines during a read access are shown in bold.

L2H$Level$Shi+erDV/Mux

VddH
0%&Vdd(H/L)

input[0]

0%&Vdd(H/L)

input[1]

0%&Vdd(H/L)

output
0&VddH
select

H2L$Level$Shi+er
VddL

0%&VddL
output

VddH

0&VddH
precision

VddH

input

0%&Vdd(H/L) 0&VddH
output

VddH VddH

VddL

input

0&VddH
precision
0%&Vdd(H/L)

VddH

Figure 3. Transistor-level design of dual-voltage multiplexer (DV-Mux) and high-to-low (H2L) and low-to-high (L2H) level shifters.

Decode (OOO/in-order) [Instruction Control Plane] The in-
struction decoding logic needs to distinguish between approximate
and precise instructions. The decode stage passes along one extra
bit indicating the precision level of the decoded instruction.

In addition, based on the instruction, the decoder generates pre-
cision bits to accompany the indices for each register read or writ-
ten. These register precision bits will be used when accessing the
dual-voltage register file as discussed in Section 4.1. The precision
levels of the source registers are extracted from the operand preci-
sion flags while the precision of the destination register corresponds
to the precision of the instruction. For load and store instructions,
the address computation must always be performed precisely, even
when the data being loaded or stored is approximate. For approxi-
mate load and store instructions, the registers used for address cal-
culation are always precise while the data register is always approx-
imate. Recall that the microarchitecture does not check that precise
registers are always used precisely and approximate registers are
used approximately. This correspondence is enforced by the com-

piler and encoded in the instructions, simplifying the design and
reducing the overheads of mixed-precision computation.

Rename (OOO) [Instruction Control Plane] For the OOO de-
sign, in which the register renaming logic generates the physical
register indices/tags, the physical register tags are coupled with the
register precision bits passed from the decode stage. The rest of the
register renaming logic is the same as in the base design.

Issue (OOO) [Instruction Control Plane] The slots in the issue
logic need to store the register index precision bits as well as the
physical register indices. That is, each physical tag entry in an issue
slot is extended by one bit. The issue slots also need to store the bit
indicating the precision of the instruction. When an approximate
load instruction is issued, it gets a slot in the load/store queue. The
address entry of each slot in the load/store queue is extended by one
extra bit indicating whether the access is approximate or precise.
The precision bit is coupled with the address in order to control

6 2012/1/11

the precision level of the data cache access (as described above in
Section 4.1).

Schedule (OOO) [Instruction Control Plane] As will be dis-
cussed in the execution stage, there are separate functional units for
approximate and precise computation in Truffle. The approximate
functional units act as shadows of their precise counterparts. The
issue width of the processor is not extended due to the extra approx-
imate functional units and no complexity is added to the schedul-
ing logic to accommodate them. The coupled approximate/precise
functional units appear to the scheduler as a single unit. For ex-
ample, if an approximate floating-point operation is scheduled to
issue, the precise and approximate FPUs are both considered busy.
The bit indicating the precision level of the instruction is used to en-
able either the approximate or precise functional unit exclusively.

Register Read (OOO/in-order) [Data Movement/Processing Plane]
The data movement/processing plane starts at the register read
stage. As depicted in Figure 4, the pipeline registers are divided
into two sets starting at this stage: one operating at V

dd

L (Approx
Data Pipe Reg) and the other operating at V

dd

H (Precise Data Pipe
Reg + Control). The approximate pipeline register holds approxi-
mate data. The precise pipeline register contains control informa-
tion passed along from previous stages and precise program data.
The outputs of the precise and approximate pipeline registers are
multiplexed through a DV-Mux as needed.

The dual-voltage register file (physical in the OOO design and
architectural in the in-order design) is made up of DV-SRAM
arrays. Each register can be dynamically set as approximate or
precise. While the precision levels of the general-purpose registers
are determined dynamically, the pipeline registers are hardwired
to their respective voltages to avoid voltage level changes when
running approximate and precise instructions back-to-back.

The ISA allows precise instructions to use approximate registers
as operands and vice-versa. To carry out such instructions with
minimal error, the voltage levels of the operands need to be changed
to match the voltage level of the operation. In the register read
stage, the level shifters illustrated in Figure 4 convert the voltage
level of values read from the register file. For example, if reg1
is precise and used in an approximate operation, its voltage level
is shifted from high to low through an H2L level shifter before
being written to an approximate pipeline register. The precision
level of reg1, denoted by reg1Precision, is passed to the level
shifter to avoid unnecessary level shifting in the case that reg1 is
already approximate. Similarly, a low-to-high (L2H) level shifter
is used to adjust the voltage level of values written to the precise
pipeline register. Note that only one of the approximate or precise
data pipeline registers is enabled based on the precision of the
instruction.

Execute (OOO/in-order) [Data Movement/Processing Plane]
As shown in Figure 4, all the functional units are duplicated in
the execution stage. Half of them are hardwired to V

dd

H , while the
other half operate at V

dd

L as shadows. That is, the scheduler does
not distinguish between a shadow approximate FU and its precise
counterpart. Only the instruction precision bit controls whether the
results are taken from the precise or approximate FU. Low-voltage
functional units are connected to a low-voltage pipeline register.
The outputs of the approximate FUs connect to the same broadcast
network as their precise counterparts through a dual-voltage multi-
plexer driven by the approximate and precise pipeline register pair
at the end of the execution stage.

The inputs of functional units may also be driven by the bypass
network. Level shifters at the inputs of the functional units adjust
the level of the broadcasted input data using the broadcasted preci-
sion bit. Only a single-bit precision signal is added to the broadcast
network. Because the output of each FU pair is multiplexed, the

extra FUs do not increase the size of the broadcast network beyond
adding this single-bit precision line. While the data bypass network
alternates between V

dd

L and V
dd

H , the tag forwarding network
in the OOO design always works at the high voltage level since it
carries necessarily-precise register indexing information.

To avoid unnecessary dynamic power consumption in the func-
tional units, the input to one functional unit is kept constant (by not
writing to its input pipeline register) when its opposite-precision
counterpart is being used.

An alternative design could use dual-voltage functional units
and change the voltage depending on the instruction being exe-
cuted. This would save area and static power but require a more
complex scheduler design that can set the appropriate voltage level
in the functional unit before delivering the operands to it. Since
functional units can be large and draw a considerable amount of
current while switching, a voltage-selecting transistor for a dual-
voltage functional unit needs to be sized such that it can provide the
required drive. Such transistors tend to consume significant power.
Another possibility is lowering the FU voltage based on phase pre-
diction. When the application enters an approximate phase, the
voltage level of the functional unit is lowered. Phase prediction re-
quires extra power and complicates the microarchitecture design.
The main objective in the design of Truffle is to keep the microar-
chitectural changes to a minimum and avoid complexity in the in-
struction control and bookkeeping. Furthermore, since programs
consist of a mixture of precise and approximate instructions, it is
not obvious that phase-based voltage level adjustments can provide
benefit that compensates for the phase prediction overhead. Addi-
tionally, static partitioning can help tolerate process variation by
using defective functional units for approximate computations.

Memory (OOO/in-order) [Data Movement/Processing Plane]
As previously discussed, the address field in each slot of the
load/store queue is extended by one bit that indicates whether the
address location is precise or approximate. The data array portion
of the data cache is a DV-SRAM array, while the tag array is an
ordinary single-voltage SRAM structure. The approximation gran-
ularity in the data cache is a cache line: one extra bit is stored in
the tag array which identifies the precision level of each cache line.
The extra bit in the load/store queue is used as the precision sig-
nal when accessing the DV-SRAM data array. The miss buffer, fill
buffer, prefetch buffer, and write back buffers all operate at V

dd

H .
The DTLB also requires no changes.

The precision level of a cache line is determined by the load or
store instruction that fills the line. If an approximate access misses
in the cache, the line is fetched as approximate. Similarly, a precise
miss fills the cache line as precise. Subsequent write hits also affect
line precision: when a store instruction modifies the data in a cache
line, it also modifies the line’s precision level (see Section 2).

This paper focuses on the Truffle core and does not present a
detailed design for approximation-aware lower levels of cache or
main memory. The L1 cache described here could work with an
unmodified, fully-precise L2 cache, but a number of options are
available for the design of an approximation-aware L2. If the L2
has the same line size as the L1, then an identical strategy can be
applied. However, L2 lines are often larger than L1 lines. In that
case, one option is to control L2 precision at a sub-line granularity:
if the L2 line size is n times the L1 line size, then the L2 has n
precision columns. An alternative design could pair the lower-level
caches with main memory, setting the precision of L2 lines based
on the explicitly-controlled main-memory precision levels. These
non-core design decisions are orthogonal to the core Truffle design
and are an avenue for future work.

Write Back (OOO/in-order) [Data Movement/Processing Plane]
The write back value comes from the approximate or precise

7 2012/1/11

VddH

Pr
ec
isi
on

,C
ol
um

n

VddL

Dual4Voltage,
Register,File

VddL

VddH

VddH

Ap
pr
ox
,D
at
a,
Pi
pe

,R
eg

VddL

Pr
ec
ise

,D
at
a,
Pi
pe

,R
eg

Co
nt
ro
l

VddH

Ap
pr
ox
,D
at
a,
Pi
pe

,R
eg

VddL

Pr
ec
ise

,D
at
a,
Pi
pe

,R
eg

Co
nt
ro
l

precisionBypass

dataBypass

L2H,
Level,
Shi@er

H2L,
Level,
Shi@er

VddH

Ap
pr
ox
,D
at
a,
Pi
pe

,R
eg

VddL

Pr
ec
ise

,D
at
a,
Pi
pe

,R
eg

Co
nt
ro
l

L2H,
Level,
Shi@er

L2H,
Level,
Shi@er

H2L,
Level,
Shi@er

H2L,
Level,
Shi@er

reg1Precision

reg2Precision

reg1

reg2reg0Index

reg1Index

reg1Precision

reg2Index

reg2Precision

reg0

r
e
g
0
P
r
e
c
i
s
i
o
n

Precise
FU

Shadow,
Approx
FU

1
n

reg1Precision

reg1

Figure 4. The register and execution stages in the Truffle pipeline along with the bypass network. The DV-Muxes and other approximation-
aware units are shaded. The single-bit precision signals in the bypass network and in each stage are dashed lines.

pipeline register. As shown in Figure 4, the dual-voltage multi-
plexer driving reg0 forwards the write back value to the data by-
pass network. The precision bit accompanying the write back value
(reg0Precision) is also forwarded over the bypass network’s
precision line.

Commit (OOO) [Instruction Control Plane] The commit stage
does not require any special changes and the reorder buffer slots
do not need to store any extra information for the approximate
instructions. The only consideration is that, during rollbacks due
to mispredictions or exceptions, the precision state of the registers
(one bit per register) needs to be restored. Another option is to
restore all the registers as precise, ignoring the precision level of
the registers during rollback.

4.4 Microarchitectural Overheads in Truffle
In this section, we briefly consider the microarchitectural overheads
imposed by routing two power lines to structures in Truffle’s data
movement/processing plane. First, the data part of the pipeline
registers is duplicated to store approximate data. An extra level of
dual-voltage multiplexing is added after these pipeline registers to
provide the data with the correct voltage for the next stage. The
DV-SRAM arrays, including the register file and data array in the
data cache, store one precision bit per row. In addition, a one-bit
precision signal is added to each read/write port of the DV-SRAM
array and routed to each subarray along with the V

dd

L power line.
The tag for each data cache line is also augmented by a bit storing
the precision state of the line. However, the tag array itself is an
ordinary single-voltage SRAM structure. To adjust the voltage level
of the operands accessed from the dual-voltage register file, one set
of H2L and one set of L2H level shifters is added for each read
port of the register file. Similarly, in the execution stage, one set of
each level shifter type is added per operand from the data bypass
network. The data bypass network is also augmented with a single-
bit precision signal per operand. In addition, each entry in the issue

queue is extended by one bit preserving the precision level of the
instruction. Each physical tag entry in an issue slot is also extended
by one precision bit. Similarly, the slots in the load/store queue
are augmented by one extra bit indicating whether the access is
approximate or precise. The pipeline registers also need to store
the precision level of the operands and instructions.

5. Experimental Results
Our goals in evaluating Truffle are to determine the energy savings
brought by disciplined approximation, characterize where the en-
ergy goes, and understand the QoS implications for software.

5.1 Evaluation Setup
We extended CACTI [21] to model the dual-voltage SRAM struc-
ture we propose and incorporated the resulting models into Mc-
PAT [17]. We modeled Truffle at the 65 nm technology node in the
context of both in-order and out-of-order (based on the 21264 [3])
designs. Table 2 shows the detailed microarchitectural parameters.

Disciplined approximate computation represents a trade-off be-
tween energy consumption and application output quality. There-
fore, we evaluate each benchmark for two criteria: energy savings
and sensitivity to error. For the former, we collect statistics from the
benchmarks’ execution as parameters to the McPAT-based power
model; for the latter, we inject errors into the execution and mea-
sure the consequent degradation in output quality.

For both tasks, we use a source-to-source transformation that
instruments the program for statistics collection and error injec-
tion. Statistics collected for power modeling include variable, field,
and array accesses, basic blocks (for branches), and arithmetic and
logical operators. A cache simulator is used to distinguish cache
hits and misses; the register file is simulated as a small, fully-
associative cache. For error injection, each potential injection point
(approximate operations and approximate memory accesses) is in-

8 2012/1/11

Table 2. Microarchitectural parameters.
Parameter OOO Truffle In-order Truffle
Fetch/Decode Width 4/4 2/2
Issue/Commit Width 6/4 —/—
INT ALUs/FPUs 4/2 1/1
INT Mult/Div Units 1 1

Approximate INT ALUs/FPUs 4/2 1/1
Approximate INT Mult/Div Units 1 1

INT/FP Issue Window Size 20/15 —
ROB Entries 80 —
INT/FP Architectural Registers 32/32 32/32
INT/FP Physical Registers 80/72 —
Load/Store Queue Size 32/32 —

ITLB 128 64
I Cache Size 64 Kbyte 16 Kbyte
Line Width/Associativity 32/2 16/4

DTLB 128 64
D Cache Size 64 Kbyte 32 Kbyte
Line Width/Associativity 16/2 16/4

Branch Predictor Tournament Tournament

Table 3. List of benchmarks.
Application Description Type
fft

SciMark2 benchmark:
scientific kernels

FP
sor FP
mc FP
smm FP
lu FP

zxing Bar code decoder for mobile phones FP/integer
jmeint jMonkeyEngine game framework: tri-

angle intersection kernel
FP

imagefill ImageJ raster image processing ap-
plication: flood-filling kernel

integer

raytracer 3D image renderer FP

tercepted; each bit in the resulting value is flipped according to a
per-component probability before being returned to the program.

Benchmarks We examine nine benchmark programs written in
the EnerJ language, which is an extension to Java [23]. The ap-
plications are the same programs that were evaluated in [23]: exist-
ing Java programs hand-annotated with approximate type qualifiers
that distinguish their approximate parts. Five of the benchmarks
come from the SciMark2 suite. ZXing is a multi-format bar code
recognizer developed for Android smartphones. jMonkeyEngine is
a game development engine; we examine the framework’s triangle-
intersection algorithm used for collision detection. ImageJ is a li-
brary and application for raster image manipulation; we examine its
flood-filler algorithm. Finally, we examine a simple 3D raytracer.

For each program, an application-specific quality-of-service
metric is defined in order to quantify the loss in output qual-
ity caused by hardware approximation. For most of the applica-
tions, the metric is the root-mean-square error of the output vector,
matrix, or pixel array. For jmeint, the jMonkeyEngine triangle-
intersection algorithm, the metric is the proportion of incorrect
intersection decisions. Similarly, for the zxing bar code recognizer,
it is the proportion of unsuccessful decodings of a sample QR code
image.

5.2 Unchecked Truffle Microarchitecture
Figure 5 presents the energy savings achieved in the core and L1
cache for the unchecked dual-voltage Truffle microarchitecture in
both OOO and in-order configurations. In both designs, V

dd

H =
1.5 V and V

dd

L takes values that are 50%, 62.5%, 75%, and 87.5%
of V

dd

H . The frequency is set constant at 1666 MHz. The Truffle

Energy Savings for OOO Truffle

!5%$

0%$

5%$

10%$

15%$

20%$

!" imagefill" jmeint" lu" mc" raytracer" smm" sor" zxing" average"

%
"E
ne

rg
y"
Re

du
c:
on

" VddL$=$0.75V VddL$=$0.94V VddL$=$1.13V VddL$=$1.31V

Energy Savings for In-Order Truffle

0%#
5%#
10%#
15%#
20%#
25%#
30%#
35%#
40%#
45%#

!" imagefill" jmeint" lu" mc" raytracer" smm" sor" zxing" average"

%
"E
ne

rg
y"
Re

du
c:
on

" VddL#=#0.75#V# VddL#=#0.94#V# VddL#=#1.13#V# VddL#=#1.31#V#

Figure 5. Percent energy reduction with unchecked OOO and in-
order Truffle designs for various V

dd

L voltages.

cores include DV-SRAM arrays and extra approximate functional
units. The baseline for the reported energy savings is the same core
operating at the reliable voltage level of 1.5 V and 1666 MHz
without the extra functional units or dual-voltage register files and
data cache. Our model assumes that Truffle’s microarchitectural
additions do not prolong the critical path of the base design.

Depending on the configuration, voltage, and application, Truf-
fle ranges from increasing energy by 5% to saving 43%. For the
in-order configuration, all voltage levels lead to energy savings; the
OOO design shows energy savings when V

dd

L is less than 75% of
V
dd

H . Our results suggest Truffle exhibits a “break even” point at
which its energy savings outweigh its overheads.

The difference between the energy savings in OOO and in-order
Truffle cores stems from the fact that the instruction control plane
in the OOO core accounts for a much larger portion of total energy
than in the in-order core. Recall that the instruction control plane
in the OOO core includes instruction fetch and decode, register
renaming, instruction issue and scheduling, load and store queues,
and DTLB/ITLB, whereas in the in-order setting it includes only
instruction fetch and decode and the TLBs. Since approximation
helps reduce energy consumption in the data movement/processing
plane only, the impact of Truffle in in-order cores is much higher.
Furthermore, the OOO Truffle core is an aggressive four-wide
multiple-issue processor whereas the in-order Truffle core is two-
wide. Anything that can reduce the energy consumption of the
instruction control plane indirectly helps increase Truffle’s impact.

Figure 6 depicts the energy breakdown between different mi-
croarchitectural components in the OOO and in-order Truffle cores
when V

dd

L = V
dd

H (i.e., with fully-precise computation). Among
the benchmarks, imagefill shows similar benefits for both designs.
For this benchmark, 42% and 47% of the energy is consumed in the
data movement/processing plane of the OOO and in-order Truffle
cores, respectively. On the other hand, raytracer shows the largest
difference in energy reduction between the two designs; here, the
data movement/processing plane consumes 71% of the energy in
the OOO core but just 50% in the in-order core. In summary, the
simpler the instruction control plane in the processor, the higher the
potential for energy savings with Truffle.

In addition to the design style of the Truffle core, the energy
savings are dependent on the proportion of approximate computa-
tion in the execution. Figure 7 shows the percentage of approxi-
mate dynamic instructions along with the percentage of approxi-

9 2012/1/11

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

!" #$%&'())" *$'#+,")-" $." /%0,/%.'/" 1$$" 12/" 34#+&"

5
"6
2/
'"
7+

'/
&0
"

-#./012#

345/60/78#

9::45;#<=>#

<=>#

9::45;#?@A8B-CD#

?@A8B-CD#

9::45;#9E>#

9E>#

F2G<CA2#

HIE3B-IE3#

J8542#K#

E5/6#K#

J0126@A24#

F2L/M2#

HL78#<2801#

Co
nt
ro
l'P

la
ne

D
at
a'
Pl
an

e

(a)

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

!" #$%&'())" *$'#+,")-" $." /%0,/%.'/" 1$$" 12/" 34#+&"

5
"6
2/
'"
7+

'/
&0
"

-#./012#

345/60/78#

9::45;#<=>#

<=>#

9::45;#?@A8B-CD#

?@A8B-CD#

9::45;#9E>#

9E>#

F2G<CA2#

HIE3B-IE3#

HJ78#<2801#

D
at
a$
Pl
an

e
Co

nt
ro
l$P

la
ne

(b)

Figure 6. Percent energy consumed by different microarchitec-
tural components in the (a) OOO and (b) in-order Truffle.

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

Instruc(ons* Reg*File*
Accesses*

ALU*Accesses* Mult/Div*
Accesses*

FPU*Accesses* D*Cahce*
Accesses*

%
*o
f*A

pp
ro
xi
m
at
e*
*

-# imagefill# jmeint# lu# mc# raytracer# smm# sor# zxing#

Figure 7. Percentage of approximate events.

mate ALU, multiply/divide, and floating point operations as well
as the percentage of approximate data cache accesses. Among the
benchmarks, imagefill has the lowest percentage of approximate in-
structions (20%) and no approximate floating point or multiplica-
tion operations—only 11% of its integer operations are approxi-
mate. As a fully integer application, it exhibits no opportunity for
floating-point approximation, and its approximate integer opera-
tions are dwarfed by precise control-flow operations. imagefill also
has a low ratio of approximate data cache accesses, 45%. These
characteristics result in low potential for Truffle, about 5% energy
savings for V

dd

L = 0.75 V. Conversely, raytracer shows the high-
est ratio of approximate instructions in the group. Nearly all (98%)
of its floating point operations are approximate. In addition, ray-
tracer has the highest ratio of approximate data cache accesses in
the benchmark set, 91%, which makes it benefit the most from Truf-

0%#

10%#

20%#

30%#

40%#

50%#

60%#

*# imagefill# jmeint# lu# mc# raytracer# smm# sor# zxing# average#

%
"E
ne

rg
y"
Re

du
c-
on

"

OOO#Truffle#Core#

Inorder#Truffle#Core#

Figure 8. Percent energy reduction potential for checked in-order
and OOO Truffle designs with V

dd

L = 0.75 V.

fle. The high rate of floating-point approximation is characteristic
of the FP-dominated benchmarks we examined: for many applica-
tions, more than 90% of the FP operations are approximate. This is
commensurate with the inherently approximate nature of FP repre-
sentations. Furthermore, for many benchmarks, FP data constitutes
the application’s error-resilient data plane while integers dominate
its error-sensitive control plane.

These results show that, as the proportion of approximate com-
putation increases, the energy reductions from the Truffle microar-
chitecture also increase. Furthermore, some applications leave cer-
tain microarchitectural components unexercised, suggesting that
higher error rates may be tolerable in those components. For exam-
ple, none of the benchmarks except imagefill exercise the approxi-
mate integer ALU, and the approximate multiply/divide unit is not
exercised at all. As a result, higher error rates in those components
may be tolerable. The results also support the utility of application-
specific V

dd

L settings, since each of the benchmarks exercise each
approximate component differently.

Overall, these results show that disciplined approximation has
great potential to enable low-power microarchitectures. Also, as
expected, the simpler the microarchitecture, the higher the energy
savings potential.

Overheads We modified McPAT and CACTI to model the over-
heads of Truffle as described in Section 4.4. The energy across all
the benchmarks increases by at most 2% when the applications are
compiled with no approximate instructions. The approximate func-
tional units are power-gated when there are no approximate instruc-
tions in flight. The energy increase is due to the extra precision state
per cache line and per register along with other microarchitectural
changes. CACTI models show an increase of 3% in register file
area due to the precision column and a 1% increase in the area of
the level-1 data cache. The extra approximate functional units also
contribute to the area overhead of Truffle.

5.3 Opportunities in a Checked Design
As discussed above, reducing energy consumption of the instruc-
tion control plane (and the energy used in precise instructions) can
increase the overall impact of Truffle. Section 3 outlines a design
that uses a sub-critical voltage and error detection/correction for the
microarchitectural structures that need to behave precisely. We now
present a simple limit study of the potential of such a design. Fig-
ure 8 presents the energy savings potential when the voltage level
of the instruction control plane is reduced to 1.2 V, beyond the re-
liable voltage level of V

min

= 1.5 V, and V
dd

L = 0.75 V. The
results show only the ideal case in which there is no penalty associ-
ated with error checking and correction in the precise computation.
As illustrated, the gap in energy savings potential between the OOO

10 2012/1/11

fft im
ag
ef
ill

jm
ei
nt

lu m
c

ra
yt
ra
ce
r

sm
m

so
r

zx
in
g

ALU

cache

FPU

multiplier

registers

together

(a)

Sensitivity to errors in all components

error probability

ap
pl

ic
at

io
n

ou
tp

ut
 e

rro
r

0.0

0.2

0.4

0.6

0.8

1.0

● ●

●

●

● ● ●

● ● ● ●

●

●

●

● ● ● ● ●

●

●

10−8 10−7 10−6 10−5 10−4 10−3 10−2

application
● fft

imagefill
jmeint

● lu
mc
raytracer

● smm
sor
zxing

(b)

Figure 9. Application sensitivity to circuit-level errors. Each cell
in (a) has the same axes as (b): application QoS degradation is
related to architectural error probability (on a log scale). The grid
(a) shows applications’ sensitivity to errors in each component in
isolation; the row labeled “together” corresponds to experiments
in which the error probability for all components is the same. The
plot (b) shows these “together” configurations in more detail. The
output error is averaged over 20 replications.

and in-order designs is significantly reduced. In one case, imagefill,
the checked OOO Truffle core shows higher potential compared to
the checked in-order Truffle core. In this benchmark, the energy
consumption of the instruction control plane is more dominant in
the OOO design and thus lower voltage for that plane is more ef-
fective than in the in-order design. Note that in an actual design,
energy savings will be restricted by the error rates in the instruc-
tion control plane and the rate at which the precise instructions fail,
triggering error recovery. The overhead of the error-checking struc-
tures will further limit the savings.

5.4 Error Propagation from Circuits to Applications
We now present a study of application QoS degradation as we inject
errors in each of the microarchitectural structures that support ap-
proximate behavior. The actual pattern of errors caused by voltage
reduction is highly design-dependent. Modeling the error distribu-
tions of approximate hardware is likely to involve guesswork; the
most convincing evaluation of error rates would come from exper-
iments with real Truffle hardware. For the present evaluation, we
thoroughly explore a space of error rates in order to characterize
the range of possibilities for the impact of approximation.

Figure 9 shows each benchmark’s sensitivity to circuit-level
errors in each microarchitectural component. Some applications
are significantly sensitive to error injection in most components

(fft, for example); others show very little degradation (imagefill,
raytracer, mc, smm). Errors in some components tend to cause
more application-level errors than others—for example, errors in
the integer functional units (ALU and multiplier) only cause output
degradation in the benchmarks with significant approximate integer
computation (imagefill and zxing).

The variability in application sensitivity highlights again the
utility of using a tunable V

dd

L to customize the architecture’s error
rate on a per-application basis (see Section 3). Most applications
exhibit a critical error rate at which the application’s output quality
drops precipitously—for example, in Figure 9(b), fft exhibits low
output error when all components have error probability 10�6 but
significant degradation occurs at probability 10�5. A software-
controllable V

dd

L could allow each application to run at its lowest
allowable power while maintaining acceptable output quality.

In general, the benchmarks do not exhibit drastically different
sensitivities to errors in different components. A given benchmark
that is sensitive to errors in the register file, for example, is also
likely to be sensitive to errors in the cache and functional units.

6. Related Work
A significant amount of prior work has proposed hardware that
compromises on execution correctness for benefits in performance,
energy consumption, and yield. ERSA proposes collaboration be-
tween discrete reliable and unreliable cores for executing error-
resilient applications [16]. Stochastic processors encapsulate an-
other proposal for variable-accuracy functional units [22]. Proba-
bilistic CMOS (PCMOS) proposes to use the probability of low-
voltage transistor switching as a source of randomness for special
randomized algorithms [5]. Finally, algorithmic noise-tolerance
(ANT) proposes approximation in the context of digital signal
processing [12]. Our proposed dual-voltage design, in contrast,
supports fine-grained, single-core approximation that leverages
language support for explicit approximation in general-purpose
applications. It does not require manual offloading of code to co-
processors and permits fully-precise execution on the same core
as low-power approximate instructions. Truffle extends general-
purpose CPUs; it is not a special-purpose coprocessor.

Relax is a compiler/architecture system for suppressing hard-
ware fault recovery in certain regions of code, exposing these errors
to the application [9]. A Truffle-like architecture supports approx-
imation at a single-instruction granularity, exposes approximation
in storage elements, and guarantees precise control flow even when
executing approximate code. In addition, Truffle goes further and
elides fault detection as well as recovery where it is not needed.

Razor and related techniques also use voltage underscaling for
energy reduction but use error recovery to hide errors from the ap-
plication [10, 14]. Disciplined approximate computation can enable
energy savings beyond those allowed by correctness-preserving op-
timizations.

Broadly, the key difference between Truffle and prior work is
that Truffle was co-designed with language support. Specifically,
relying on disciplined approximation with strong static guarantees
offered by the compiler and language features enables an efficient
and simple design. Static guarantees also lead to strong safety
properties that significantly improve programmability.

The error-tolerant property of certain applications is supported
by a number of surveys of application-level sensitivity to circuit-
level errors [8, 18, 27]. Truffle is a microarchitectural technique for
exploiting this application property to achieve energy savings.

Dual-voltage designs are not the only way to implement low-
power approximate computation. Fuzzy memoization [2] and bit-
width reduction [26], for example, are orthogonal techniques for
approximating floating-point operations. Imprecise integer logic
blocks have also been designed [20]. An approximation-aware pro-

11 2012/1/11

cessor could combine dual-voltage design with these other tech-
niques.

Previous work has also explored dual-V
dd

designs for power op-
timization in fully-precise computers [6, 29]. Truffle’s instruction-
controlled voltage changes make it fundamentally different from
these previous techniques.

Truffle resembles architectures that incorporate information
flow tracking for security [7, 24, 25]. In that work, the hardware
enforces information flow invariants dynamically based on tags
provided by the application or operating system. With Truffle, the
compiler provides the information flow invariant, freeing the archi-
tecture from costly dynamic checking.

7. Conclusion
Disciplined approximate programming is an effective and usable
technique for trading off superfluous correctness guarantees for en-
ergy savings. Dual-voltage microarchitectures can realize these en-
ergy savings by providing both approximate and precise computa-
tion to be controlled at a fine grain by the compiler. We propose an
ISA that simplifies the hardware by relying on the compiler to pro-
vide certain invariants statically, eliminating the need for checking
or recovery at run time. We describe a high-level microarchitec-
ture that supports interleaved high- and low-voltage operations and
a detailed design for a dual-voltage SRAM array that implements
approximation-aware caches and registers. We model the power of
our proposed dual-voltage microarchitecture and evaluate its en-
ergy consumption in the context of a variety of error-tolerant bench-
mark applications. Experimental results show energy savings up to
43%; under reasonable assumptions, these benchmarks exhibit low
or negligible degradation in output quality.

Acknowledgments
We would like to thank the anonymous reviewers for their valuable
comments. We also thank Sied Mehdi Fakhraie, Jacob Nelson,
Behnam Robatmili, and the members of the Sampa group for their
feedback on the manuscript. This work was supported in part by
NSF grant CCF-1016495, a Sloan Research Fellowship, and gifts
from Microsoft and Google.

References
[1] Alpha Architecture Handbook, Version 3. Digital Equipment Corpora-

tion, 1996.
[2] C. Alvarez, J. Corbal, and M. Valero. Fuzzy memoization for floating-

point multimedia applications. IEEE Trans. Comput., 54(7), 2005.
[3] S. Y. Borkar and A. A. Chien. The Aplha 21264 Microprocessor.

MICRO, 1999.
[4] S. Y. Borkar and A. A. Chien. The future of microprocessors. CACM,

54, May 2011.
[5] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz,

K. V. Palem, and B. Seshasayee. Ultra-efficient (embedded) SOC
architectures based on probabilistic CMOS (PCMOS) technology. In
DATE, 2006.

[6] C. Chen, A. Srivastava, and M. Sarrafzadeh. On gate level power
optimization using dual-supply voltages. IEEE Trans. VLSI Syst., 9,
2001.

[7] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A flexible informa-
tion flow architecture for software security. In ISCA, 2007.

[8] M. de Kruijf and K. Sankaralingam. Exploring the synergy of emerg-
ing workloads and silicon reliability trends. In SELSE, 2009.

[9] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: An architec-
tural framework for software recovery of hardware faults. In ISCA,
2010.

[10] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A low-power
pipeline based on circuit-level timing speculation. In MICRO, 2003.

[11] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger. Dark silicon and the end of multicore scaling. In ISCA,
2011.

[12] R. Hegde and N. R. Shanbhag. Energy-efficient signal processing via
algorithmic noise-tolerance. In ISLPED, 1999.

[13] J. Howard et al. A 48-core IA-32 message-passing processor with
DVFS in 45nm CMOS. In ISSCC, 2010.

[14] A. Kahng, S. Kang, R. Kumar, and J. Sartori. Designing a processor
from the ground up to allow voltage/reliability tradeoffs. In HPCA,
2010.

[15] W. Kim, D. Brooks, and G.-Y. Wei. A fully-integrated 3-level DC/DC
converter for nanosecond-scale DVS with fast shunt regulation. In
ISSCC, 2011.

[16] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra. ERSA: Error
resilient system architecture for probabilistic applications. In DATE,
2010.

[17] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi. McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In MICRO,
2009.

[18] X. Li and D. Yeung. Exploiting soft computing for increased fault
tolerance. In ASGI, 2006.

[19] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: Sav-
ing refresh-power in mobile devices through critical data partitioning.
In ASPLOS, 2011.

[20] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas. Bio-
inspired imprecise computational blocks for efficient VLSI implemen-
tation of soft-computing applications. Trans. Cir. Sys. Part I, 57, 2010.

[21] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing
NUCA organizations and wiring alternatives for large caches with
CACTI 6.0. In MICRO, 2007.

[22] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones. Scalable stochas-
tic processors. In DATE, 2010.

[23] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. EnerJ: Approximate data types for safe and general
low-power computation. In PLDI, 2011.

[24] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. In ASPLOS, 2004.

[25] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood. Complete information flow tracking from the gates up.
In ASPLOS, 2009.

[26] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar. Reducing power by
optimizing the necessary precision/range of floating-point arithmetic.
IEEE Trans. VLSI Syst., 8(3), 2000.

[27] V. Wong and M. Horowitz. Soft error resilience of probabilistic
inference applications. In SELSE, 2006.

[28] Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors, Y. Wu,
J. Lee, and D. Brooks. A dynamic compilation framework for control-
ling microprocessor energy and performance. In MICRO, 2005.

[29] C. Yeh, Y.-S. Kang, S.-J. Shieh, and J.-S. Wang. Layout techniques
supporting the use of dual supply voltages for cell-based designs. In
DAC, 1999.

[30] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. ECOSystem: Man-
aging energy as a first class operating system resource. In ASPLOS,
2002.

12 2012/1/11

